Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products

Evaluation of active substances

Assessment Report PUBLIC VERSION

Copper pyrithione Product type 21

[Sept 2014, public version May 2015]

Rapporteur Member State: Sweden

Copper pyrithione (PT 21) Assessment report

Finalised in the Standing Committee on Biocidal Products at its meeting on [May 2014] CONTENTS

1.	STA	TEMEN	NT OF SUBJECT MATTER AND PURPOSE	4
	1.1	Princip	le of evaluation	4
	1.2	Purpos	e of the assessment	4
	1.3	Proced	ure followed	4
2.	OVE	ERALL	SUMMARY AND CONCLUSIONS	6
	2.1	Present	tation of the Active Substance	6
		2.1.1	Identity, Physico-Chemical Properties & Methods of Analysis	6
		2.1.2	Intended Uses and Efficacy	9
		2.1.3	Classification and Labelling	. 10
	2.2	Summa	ary of the Risk Assessment	. 12
		2.2.1	Human Health Risk Assessment	. 12
		2.2.2	Human health exposure assessment	. 17
		2.2.3	Environmental Risk Assessment	. 40
		2.2.4	Compliance with the environmental criteria for approval of activity substance according to Annex VI of Directive 98/8/EC	ve . 56
		2.2.5	List of endpoints	. 57
	2.3	Overal	l conclusions	. 58
A DI	DENID	IV I. I 1	IST OF ENDBOINTS	50
AL	Char	oter 1:	Identity. Physical and Chemical Properties. Classification and	. 59
	enur	Labelli	ng	. 59
	Chap	oter 2:	Methods of Analysis	. 63
	Chap	oter 3:	Impact on Human Health	. 64
	Chap	oter 4:	Fate and Behaviour in the Environment	. 68
	Chapter 5:		Effects on Non-target Species	. 71
	Chap	oter 6:	Other End Points (examples)	. 73
API	PEND	DIX II: L	IST OF INTENDED USES	. 76
API	PEND	IX III:	LIST OF STUDIES	, 78
API	PEND	IX IV:	LIST OF STANDARD TERMS AND ABBREVIATIONS	. 79
LIS	T1:	LIST O	F STANDARD TERMS AND ABBREVIATIONS	, 79
LIS	T 2 :	ABBRE	VIATIONS OF ORGANISATIONS AND PUBLICATIONS	. 86

Copper pyrithione	Product type 21	7th BPR Meeting Sept 2014

1. STATEMENT OF SUBJECT MATTER AND PURPOSE

1.1 Principle of evaluation

This assessment report has been established as a result of the evaluation of copper pyrithione in product type 21(antifouling biocidal products), carried out in the context of the work programme for the review of existing active substances provided for in Article 16(2) of Directive 98/8/EC concerning the placing of biocidal products on the market¹, with the original view to the possible approval of this substance under that directive.

The evaluation has therefore been conducted in the view to determine whether it may be expected, in light of the common principles laid down in Annex VI to Directive 98/8/EC, that there are products in product type 21 containing copper pyrithione that will fulfil the requirements laid down in Article 5(1) b), c) and d) of that directive.

1.2 Purpose of the assessment

The aim of the assessment report is to support a decision on the approval of copper pyrithione for product-type 21, and should it be approved, to facilitate the authorisation of individual biocidal products in product type 21 that contain copper pyrithione. In the evaluation of applications for product-authorisation, the provisions of Regulation (EU) No 528/2012 shall be applied, in particular the provisions of Chapter IV, as well as the common principles laid down in Annex VI.

The conclusions of this report were reached within the framework of the uses that were proposed and supported by the applicants (see Appendix II). Extension of the use pattern beyond those described will require an evaluation at product authorisation level in order to establish whether the proposed extensions of use will satisfy the requirements of Regulation (EU) No 528/2012.

For the implementation of the common principles of Annex VI, the content and conclusions of this assessment report shall be taken into account.

However, where conclusions of this assessment report are based on data protected under the provisions of Regulation (EU) No 528/2012, such conclusions may not be used to the benefit of another applicant, unless access to these data has been granted.

1.3 Procedure followed

Copper pyrithione (CAS no. 14915-37-8) was notified as an existing active substance in product type 21 by Arch Chemicals Inc. (currently Lonza), and API Corporation Ltd. (currently Mitsubishi Chemical Corporation).

¹ Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing biocidal products on the market. OJ L 123, 24.4.98, p.1

Cop	per	pyrithione

Commission Regulation (EC) No. 1451/2007 of 4 December 2007^2 lays down the detailed rules for the evaluation of dossiers and for the decision-making process in order to include or not an existing active substance into Annex I or IA to the Directive.

In accordance with the provisions of Article 7(1) of that Regulation, Sweden was designated as Rapporteur Member State (RMS) to carry out the assessment on the basis of the dossier submitted by the applicant. The deadline for submission of a complete dossier for copper pyrithione as an active substance in product type 21 was 30 April 2006 in accordance with Annex V of Regulation (EC) No. $2032/2003^3$.

The Swedish Chemicals Agency, the Competent Authority of Sweden, received on 30 April, 2006 two dossiers for the active substance copper pyrithione in PT 21 (antifouling products) from the applicants Arch Chemicals Inc. (bought by Lonza in 2011) and API Corporation Ltd. Some data gaps were identified in the latter dossier but the participant agreed to submit reports and study summaries to cover these gaps and the dossier was regarded as sufficiently complete to start the evaluation. The dossiers were accepted as complete on the 27th of October, 2006. During the evaluation of copper pyrithione, further information was requested for some endpoints whereupon new studies were submitted in January 2008 and December 2009.

On 28 January 2011, the Rapporteur Member State submitted, in accordance with the provisions of Article 10(5) and (7) of Regulation (EC) No. 2032/2003, to the Commission and the applicant a copy of the evaluation report, hereafter referred to as the competent authority report. The Commission made the report available to all Member States by electronic means on 7 February 2011. The competent authority report included a recommendation for the inclusion of copper pyrithione in Annex I to the Directive.

In order to review the competent authority report and the comments received on it, consultations of technical experts from all Member States (peer review) were organised by the Commission. The first discussion took place at TM III in October 2011, and further discussions on technical level were held at TM IV in December 2011, TM I in March 2012, TM II in June 2012. Revisions agreed upon were presented at technical meetings and the competent authority report was amended accordingly til the version here presented for the Competent Authority Meeting (September 2013).

In accordance with Article 15(4) of Regulation (EC) No 1451/2007, the present assessment report contains the conclusions of the Standing Committee on Biocidal Products, as finalised during its meeting held on 22 May 2015.

² Commission Regulation (EC) No 1451/2007 of 4 December 2007 on the second phase of the 10-year work programme referred to in Article 16(2) of Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. OJ L 325, 11.12.2007, p. 3

³ Commission Regulation (EC) No 2032/2003 of 4 November 2003 on the second phase of the 10-year work programme referred to in Article 16(2) of Directive 98/ 8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market, and amending Regulation (EC) No 1896/2000. OJ L307, 24.11.2003, p1

2. OVERALL SUMMARY AND CONCLUSIONS

2.1 Presentation of the Active Substance

2.1.1 Identity, Physico-Chemical Properties & Methods of Analysis

2.1.1.1 Identity

CAS-No.	14915-37-8
EINECS-No.	238-984-0
Other No. (CIPAC, ELINCS)	None
IUPAC Name	bis(1-hydroxy-1H-pyridine-2-thionato-O,S)copper
CA Name	copper, bis[1-hydroxy-2-(1H)-pyridinethionato-O,S]-
Common name, synonyms	No ISO-common name available
	Synonyms:
	copper pyrithione
	copper pyridinethione
	copper 2-pyridinethiol-1-oxide
	2-pyridinethiol-1-oxide, copper salt
	copper <i>Omadine®</i> (registered trademark of Arch Chemicals, Inc.)
	Tomicide CPT (development code used by API corporation)
Structural formula	
Molecular formula	C10H8N2O2S2Cu
Molecular weight (g/mol)	315.86
Purity of a.s.	Min: 95%w/w (supported by batch data from both manufacturers). Technical equivalence has been confirmed for the two manufacturers, see the confidential Appendix to Doc II-A* (i.e. equivalence has been confirmed despite the additional requirement for new 5-batch data as listed under impurities below)
Impurities	None of the impurities present in technical copper pyrithione are considered relevant. The information on impurities in the technical material are found in the respective Doc III A Confidential Annex for the two manufacturers. A new 5-batch analysis to confirm/revise the technical specification with respect to impurities for the applicant Arch

Copper pyrithione	Product type 21	7th BPR Meeting Sept 2014

	is considered required (see further the Confidential Annex A for Arch).	
Additives	No additives	
Representative biocidal product(s)	and (viscous liquid antifouling paint formulations), Dummy 4% and Dummy 2%.	

* CAR_CuPT_CONFIDENTIAL_(to both Arch and API)_Doc_II_A_PT_21_Appendix_Technical_Equivalence

2.1.1.1 Physico-Chemical Properties

Technical copper pyrithione is a green odourless powder (>98% purity). Technical copper pyrithione decomposes upon melting at 273–279°C (>98% purity). The solubility of purified copper pyrithione (99% purity) in water was determined to be 49, 60 and 150 μ g/L at 10, 20 and 30°C respectively (non-buffered distilled water, pH 5.9-7.1). In buffered solutions the solubility in water at 25°C was found to be 55, 102 and 109 µg/L at pH 5, 7 and 9 respectively (99% purity). The pH dependency of the water solubility is not considered significant and is not considered to be attributed to any dissociation of copper pyrithione under the conditions of the study. The formation constant of the complex copper pyrithione $(\log K > 8.5 \text{ from published articles})$ indicates that copper pyrithione would not break even under highly acidic conditions. The pKa for free pyrithione is quoted as 4.67 in open literature, which means that the ionized dissociated form is mostly anticipated in the natural water compartment. Technical copper pyrithione (97.1% purity) was found to be sparingly soluble in organic solvents at 25°C (<0.2 mg/L in hexane, 176 mg/L in acetone, 8 mg/L in octane and 32 mg/L in xylene). The solubility of purified copper pyrithione (99.5% purity) in organic solvents was also tested (20 mg/L in methanol and 239 mg/L in acetone at 20°C). The log Pow at 21-23°C was found to be 2.44 and 2.84 for purified grade (99% purity) and technical grade respectively (>98% purity) for non-buffered distilled water (pH 5.8-~7). The pH dependency has not been tested but given the findings for the water solubility a log Pow of ~ 2.7 is expected at pH 5 (lowest water solubility) for the purified material, which does not indicate a risk for bioaccumulation. The vapour pressure for technical grade material (>98% purity) was determined as $< 5.0 \times 10^{-7}$ Pa and 4.3 x 10⁻¹⁷ Pa at 25°C by direct measurement and extrapolation respectively. The Henry's Law Constant was thus calculated as 3.48 x 10⁻¹³ Pa x mol/m³ at 25°C using the extrapolated vapour pressure and a water solubility of 39 μ g/l at 20°C and pH 6.3–6.8 (derived from a water solubility test not reported earlier). This indicates that volatilisation is not expected to significantly contribute to the dissipation of copper pyrithione in the environment. Furthermore, copper pyrithione should not be classified for flammability, explosivity or oxidizing properties.

2.1.1.2 Analytical methods

An acceptable HPLC-UV method, with respect to validation data, has been provided for the determination of copper pyrithione in the technical material. Following the submission of revalidation data for the determination of impurities in the technical material produced by Arch it is considered that these analytical methods are acceptable.

During the peer-review it was concluded that common moiety methods would in principle be acceptable for residue analytical methods in the case of copper pyrithione given that metal complexes are difficult to analyse as such and as they are not foreseen to remain as such in the different media where monitoring is required. Subsequently the RMS has proposed the following residue definitions for monitoring:

Water and soil (sediments):	Total pyrithione expressed as copper pyrithione
Air:	copper pyrithione (non-volatile, but used in spraying
	applications)
Body fluids and tissues:	2-pyridinethiol-1-oxide-S-glucuronide in urine (no residue in
	tissues)

For food of animal origin (fish and shell-fish) the TM-discussions were a bit inconclusive. In the tox-section it was concluded that there would not be any consumer risk not even with highest possible fish intake and maximum value of copper pyrithione in fish. However, the conclusion of the discussion in the general-section was that a method is not required if it can be shown that no residues will be present in fish and shell-fish. As the dossier does not contain sufficient data to demonstrate this, the following tentative residue definition is proposed (based on the fact that pyrithione is considered the toxicologically relevant residue which is likely to be present in water compartment available to fish and shell-fish):

Fish and shell-fish: Total pyrithione expressed as copper pyrithione

With respect to the proposed residue definition, Arch has provided acceptable LC-MS/MS methods for sediment (LOQ 5 μ g/kg), drinking and sea water (LOQ 0.1 μ g/l) and fish (LOQ 0.5 μ g/kg). Arch has also confirmed that they have been granted data access to the acceptable API-method for body fluids (see below). The LOQs of the methods are acceptable with respect to the relevant regulatory and scientific thresholds. No MRL is proposed for fish (or shell-fish) but the LOQ of the method is lower than the level used in the intake calculation showing no risk for consumers which means that the LOQ is considered sufficient. The methods are only validated for one ion-transition but this is considered acceptable given that at the time of the submission and evaluation of the data this was the common practice. For air: Arch provided a method for total pyrithione which is not appropriate with respect to the proposed residue definition and the LOQ (proven at 4.0 μ g/m³) is also not sufficient.

API has an acceptable RP-HPLC-UV method for the analysis of copper pyrithione in air which has a sufficient LOQ ($0.58 \ \mu g/m^3$) with respect to the short-term AEL_{inhalative} of 0.002 mg/kg bw/day currently used in the risk assessment. The method is not highly specific but they have also provided an NP-HPLC-UV method for water analysis which is acceptable as such for the analysis of copper pyrithione and therefore accepted as a confirmatory method for the air analysis (i.e. not accepted for water; see below). API has also provided an acceptable method for monitoring 2-pyridinethiol-1-oxide-S-glucuronide in urine which is thus appropriate with respect to the proposed residue definition. The LOQ (47 μ g/l) is also acceptable. As for the Arch-methods this LC-MS/MS method is only validated for one ion-transition but it is considered acceptable for the moment.

Copper	pyrithione

For the water compartment, API provided an acceptable method for the analysis of copper pyrithione as such but it is not considered appropriate with respect to the proposed residue definition. To address this further API submitted two methods from the open literature for the analysis of total pyrithione in water by HPLC-MS (LOQ $0.1-1 \mu g/L$). However these published articles do not contain the level of validation data required by the TNsG on Analytical methods.

In conclusion therefore, acceptable methods are available for all required matrices. Given the uncertainties around the actual need for a monitoring method for fish and shell-fish at all no validation data for shell-fish is considered required at the moment. Arch will need to provide an acceptable method for analysis in air 6 months before the approval date of the active substance preferably to the original Rapporteur Member State. At the same point in time API will need to provide a method for sediment and water and possibly also for fish (and shell fish).

Furthermore, in order to evaluate the behaviour of the pyrithione complexes in the environmental compartments (see further section 2.2.2 below), especially the water compartment, the RMS has also performed an assessment of relevant analytical methods available in the open literature. In conclusion the published articles indicate that zinc pyrithione is easily trans-chelated to the more stable copper pyrithione complex and in the natural water compartment copper pyrithione is sufficiently stable to be extracted by organic solvents/sorbents and subsequently analysed by e.g. LC-MS/MS as the whole complex. The full evaluation in this respect is presented in document II-A section 1.4.3.

2.1.2 Intended Uses and Efficacy

The assessment of the biocidal activity of the active substance demonstrates that it has a sufficient level of efficacy against the target organism(s) (soft fouling organisms). The evaluation of the summary data provided in support of the efficacy of the accompanying paint products (against all target organisms including hard fouling organisms), establishes that the paint product may be expected to be efficacious.

In addition, in order to facilitate the work of granting or reviewing authorisations, the intended uses of the substance, as identified during the evaluation process, are listed in Appendix II: list of intended uses. Regarding which of these intended uses are supported (acceptable risk to human health and the environment), see Figure 2 (in List of Endpoint).

Six antifouling paint products (from five product formulators) have been evaluated, and these includes copper pyrithione as a **booster biocide** in the antifouling paint. A booster biocide is not the main biocide in the paint, but is ment to be effective against soft-fouling organisms, so its function is to increase the efficacy of the product in order to remove the most problematic fouling organisms, for example the common algae e.g. *Enteromorpha spp*. and *Amphora spp* which are tolerant of copper. (According to discussions with initiated EU colleagues the term "booster biocide" are more and more being replaced by the term "co-biocide").

2.1.3 Classification and Labelling

Classification					
Category of danger	R phrases		Concentration limits		
T+	R26	Very toxic by inhalation	N; R50: $C \ge 0.025$ %		
Xn	R21	Harmful in contact with skin			
Xn	R22	Harmful if swallowed			
Xi	R41	Risk of serious damage to eyes			
Xi	R37	Irritating to respiratory system			
Т	R48/23/25	Toxic: danger of serious damage to health by prolonged exposure through inhalation and if swallowed			
Xn	R63	Possible risk to unborn child			
Ν	R50	Very toxic to aquatic life			
Labelling	-	•	•		
Symbols/	T+	Very toxic			
Indication of danger	Ν	Dangerous for the environment			
R phrases	ases R26 Very toxic by inhalation				
	R21	Harmful in contact with skin			
	R22	Harmful if swallowed			
	R41	Risk of serious damage to eyes			
	R37	Irritating to respiratory system			
	R48/23/25	Toxic: danger of serious damage to health by pro and if swallowed	olonged exposure through inhalation		
	R63	Possible risk to unborn child			
	R50	Very toxic to aquatic life			
S phrases S23 Do not breathe spray					
	S26 In case of contact with eyes, rinse immediately with plenty of water and seek advice				
	S28 After contact with skin, wash immediately with plenty of water		plenty of water		
	S36/37/39	Wear suitable protective clothing, gloves and eye	e/face protection.		
	S38	In case of insufficient ventilation wear suitable re-	espiratory equipment		
	S45	In case of accident or if you feel unwell, seek me label where possible)	edical advice immediately (show the		
	S63	In case of accident by inhalation: remove casualt	y to fresh air and keep at rest		
	S61	Avoid release to the environment. Refer to specia	al instructions/safety data sheets		

 Table 2.1.3-1 Proposed classification and labelling according to the criteria in Annex VI to Directive

 67/548/EEC (so far no CLP dossier has been sent to ECHA)

1

Classification					
Hazard class]	Hazard s	statements	M- factor	
Acute Tox. 2	Ι	H330	Fatal if inhaled		
Acute Tox. 3	I	H301	Toxic if swallowed		
Acute Tox. 3	I	H311	Toxic in contact with skin		
Eye Dam. 1 H318		H318	Causes serious eye damage		
STOT SE 3 H335		H335	May cause respiratory irritation		
Repr Cat 2	I	H361	Suspected of damaging the unborn child		
STOT RE 1	I	H372	Causes damage to the nervous system through prolonged or repeated exposure	100	
Aquat. Acute	1 I	H400	Very toxic to aquatic life	100	
Aquat. Chron.	.1 I	H410	Very toxic to aquatic life with long lasting effects	100	
Labelling					
Pictograms	GHS0	06; GHS0	05; GHS08; GHS09		
Signal word	gnal Danger ord				
Hazard H330			Fatal if inhaled		
statements	H301		Toxic if swallowed		
	H311		Toxic in contact with skin		
H31			Causes serious eye damage		
H3			May cause respiratory irritation		
H3			Suspected of damaging the unborn child		
H3			Causes damage to the nervous system through prolonged or repeated exposu	re	
H40			Very toxic to aquatic life		
H410			Very toxic to aquatic life with long lasting effects		
Pre- P280 Wea			Wear protective gloves/protective clothing/eye protection/face protection.		
cautionary	P284		Wear respiratory protection.		
(profession	P301 ·	P301 + P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician		an.	
al use only) P302 + P352		+ P352	IF ON SKIN: Wash with plenty of soap and water.		
P361			Remove/Take off immediately all contaminated clothing.		
P363			Wash contaminated clothing before reuse.		
	P304 - + P31	+ P340 0	IF INHALED: Remove victim to fresh air and keep at rest in a position composition for breathing. Immediately call a POISON CENTER or doctor/physician.	tortable	
	P305 + + P33	+ P351 8	IF IN EYES: Rinse cautiously with water for several minutes. Remove conta if present and easy to do. Continue rinsing.	ict lenses,	
	P391		Collect spillage		
	P273		Avoid release to the environment.		

Table 2.1.3-2 Proposed classification and labelling according to the criteria in Annex I to Regulation (EC) 1272/2008

2.2 Summary of the Risk Assessment

Please refer to Figure 2 (in List of Endpoints) for an overview on what has been risk assessed.

2.2.1 Human Health Risk Assessment

2.2.1.1 Toxicokinetic, Metabolism and Read across

The toxicity studies have been conducted with copper pyrithione, zinc pyrithione and sodium pyrithione. Read across between these substances is considered acceptable by the RMS based on the mode of action and toxicokinetics of the three substances in addition to the similarities in toxic effects observed in the studies performed.

The pyrithiones are slowly but extensively absorbed from the gastrointestinal tract (oral absorption is >80 %), largely distributed, intensively metabolized, and almost completely eliminated, predominantly via the urine, within 96 hours. The major metabolite was found to be 2-pyridinethiol-1-oxide-S-glucuronide, excreted in the urine. No potential for accumulation was seen.

Dermal absorption was found to be 3 % in an *in vitro* study on human skin testing of copper pyrithione diluted in ethanol. An inhalation absorption study indicated that the absorption through this route is close to the default value of 100 %.

2.2.1.2 Acute toxicity

In the two studies performed, copper pyrithione exhibited moderate toxicity after oral exposure. In addition to mortality, clinical signs were observed as diarrhoea, mucoid stools, faecal staining around the anus, decrease in spontaneous activity, traces of reddish rhinorrhea, dirty lower belly, ataxia, hunched posture, lethargy, piloerection, ptosis, decreased respiratory rate and laboured respiration with additional signs or incidents of, emaciation, staining around the eyes, mouth or snout and high stepping or splayed gait. Reduced body weights were observed in high dose animals. Necropsy of animals that died showed dark reddish mucosa of the glandular stomach/surface of the forestomach, dark-reddish hemorrhage or atrophy of the thymus and/or atelectasis, haemorrhagic lungs, dark liver and dark kidneys. LD₅₀ was 500 – 1000 mg/kg and 200 - 500 mg/kg bw, respectively, in the two studies.

Two copper pyrithione studies on dermal toxicity showed diverging results. At 2000 mg/kg bw no mortalities were observed in one study, while at the same dose level all tested animals were found dead or were sacrificed in extremis in a second study. Clinical signs included sluggishness, hunched posture, blepharospasm, ataxia, paralysis, few feces, a yellow nasal discharge, emaciation, prostration, rales, encrusted nose and body weight loss. Kidney and liver abnormalities were noted in one animal. Necropsy of these animals revealed inflammation of the abdominal organs. LD_{50} was found to be <2000 mg/kg bw and 400 - 2000 mg/kg bw respectively, in the two studies.

Copper pyrithione exhibited very high toxicity via the inhalation route with clinical signs including laboured breathing, tremors, increased salvation, lacrimation, changes in respiration rate, hypothermia, pallor of the extremities and abnormal gait. Necropsy showed abnormally dark lungs, haemorrhagic lung (one animal), and dark liver (one animal). LC₅₀ was determined to be 0.07 mg/L and 0.14 mg/L in two studies, respectively.

Based on these studies, copper pyrithione is proposed to be classified as R21/22 Harmful by skin contact and if swallowed; R26 Very toxic by inhalation.

Copper pyrithione gave no irritation reaction after dermal application but was found to cause serious damage to eyes, with damage to the cornea, iris and conjunctiva being observed. The effects were not reversible and copper pyrithione thereby fulfils the requirements for classification with R 41 Risk of serious damage to eyes. No sensitising properties were observed in a maximisation test a test according to Buehler.

2.2.1.3 Short-term toxicity

Toxic effects have been investigated in rats, dogs and monkeys with rats and dogs showing higher sensitivity to the test substance.

The typical pyrithione effects observed in rats were mortality, hind limb weakness/paralysis, reduced body weight and gastric irritation. Pyrithione seems to be more toxic by the inhalation compared to the oral route and the sudden deaths seen are without any detectable explanation. However, a possible explanation could be the effect of pyrithione on intracellular Ca^{2+} levels which is known to be toxic in high concentrations and could probably result in sudden death of the animals once the Ca^{2+} gradient has collapsed in vital organs such as the heart. The mechanism of action of copper pyrithione has not yet been fully elucidated. Similar effects seen in the rats have also been observed in birds.

The dermal NOAEL was established at 100 mg/kg bw/day based on the 90 day rat study with zinc pyrithione.

The inhalation NOAELs are based on the 28-day rat inhalation study. The systemic NOAEL is 0.0015 mg/L (based on death that could not be explained); equal to 0.38 mg/kg bw/day and the local inhalation NOAEL is 0.0005 mg/L based on inflammation reaction.

Classification as Toxic with "R 48/23/25 Risk of serious damage to health after prolonged exposure through inhalation and if swallowed" as well as R 37 "Irritating to respiratory system" is proposed for copper pyrithione. R 48/23/25 is based on the 28 day inhalation study where mortality was observed at 0.005 mg/L and on an oral 28-day toxicity study with copper pyrithione where hind limb atrophy was observed and manifested as a lack of mobility in females at 5 mg/kg bw/day. R 37 is based on laboured breathing, increased salivation, noisy respiration, gasping, rales and increased or decreased respiratory rate which was seen in acute inhalation studies.

Two studies on monkeys were also included in the Arch dossier; one 28 day study with copper pyrithione, where the doses were given in gelatine capsules, and one 90 day study with zinc pyrithione.

In the monkey copper pyrithione study the NOAEL was 22 mg/kg bw/day and LOAEL was 44 mg/kg bw/day. No neurological effects were seen at LOAEL but diarrhoea, pale oral mucosa, decreased food consumption and body weight, decreased haematocrit count, haemoglobin, erythrocyte count, and increased liver weight and triglycerides and in the urine there was a decrease in chlorine, sodium and potassium concentration. Regarding neurological effects it is obvious that rat is a more sensitive animal than monkey. It is, however, not

considered suitable for reducing the interspecies assessment factor as the human sensitivity is unknown and no neurological effects have been seen in mice even though rats and mice is supposed to be similar (concluded at TM I 2012).

In monkeys dosed with zinc pyrithione the main effects observed were anaemia and gastrointestinal effects. However, in a study on monkeys performed with sodium pyrithione for one year no significant effects on haematology were observed. This might be explained by the fact that zinc toxicosis is known to be associated with haemolytic anaemia although the mechanism for this effect seems unclear. No significant effects on haematology were observed in rats. This could be explained by the fact that the dose levels used in monkeys were several times higher than those used in rats. It is possible that since rats were more sensitive to neurological effects they suffered from hind limb paralysis and death before any haematological effects occurred. The lack of haemotological effects in rats can therefore not be taken as evidence of lack of relevance of anaemia after repeated exposure to humans, although the effect in monkeys was not inconclusively shown.

According to a published study by Knox et al (2008) hind limb effects caused by sodium pyrithione are due to a reduced rate of axoplasmic transport and the resulting accumulation of tubulovesicular profiles at the distal nerve terminals of motor neurons leading to failure of synaptic transmission at neuro-muscular junctions. The study showed that sodium pyrithione evoked increased Ca^{2+} levels in motor neurons of both rats and monkeys, but with a significant difference in sensitivity (approximately 30 times higher for rats) between the two species.

In the API dossier a 90-day dog study was included. Four groups of four Beagle dogs/sex/dose were administered once daily with copper pyrithione. The only toxicologically relevant findings observed were the histopathological changes in the liver (slight pigment accumulation) of all four males and two females of the high dose group. Based on these changes, the NOAEL was established at 0.21 mg/kg bw/day.

2.2.1.4 Genotoxicity

In the studies submitted, copper pyrithione was found to be clastogenic in one chromosome aberration study *in vitro* with and without metabolic activation while two similar tests gave negative results. Copper pyrithione also tested positive for clastogenicity in one out of two *in vitro* gene mutation studies in mammalian cells with and without metabolic activation but was negative in two mutagenicity studies in bacteria (Ames test). However, no genotoxic hazard was identified in a well-performed zinc pyrithione micronucleus test in mice *in vivo*, submitted by Arch Chemicals. Thus, in spite of its clastogenic potential *in vitro*, copper pyrithione is probably metabolised *in vivo* to non-clastogenic metabolites and does not pose a genotoxic hazard *in vivo*.

For the present assessment of the genotoxic potential of copper pyrithione it is considered that sufficient data is available. The conclusion that copper pyrithione does not pose a genotoxic hazard *in vivo* is based on the micronucleus zinc pyrithione study submitted by Arch Chemicals. At product authorization level however, API Corporation must have access to data supporting this conclusion as the RMS does not consider the studies submitted by API

Copper pyriumone

Corporation to be sufficient proof of lack of genotoxic hazard in vivo. At the WG II meeting in Mars 2014 it was agreed that there is no toxicological concern regarding the genotoxic potential of copper pyrithione due to the copper content.

2.2.1.5 Long-term toxicity and carcinogenicity

Read across to studies with sodium pyrithione has been accepted by RMS due to other existing data (TNsG on Data Requirements Principles for waiving, chapter 1.4).

A chronic NOAEL could not be established as effects were seen in the lowest dose level in both studies. The NOAEL is < 0.5 mg/kg bw/day based on increased incidences of hind leg wasting and spinal chord degradation.

Sodium pyrithione was not carcinogenic in the two studies performed with rats and mice.

Using studies on a different pyrithione compound raises the question of chronic toxicity and carcinogenicity of copper. The Swedish National Food Administration recommends a daily intake of 0.9-1.3 mg copper/day, which equals 0.015-0.022 mg/kg for a person who weighs 60 kg. The exposure levels to copper as copper pyrithione will fall below the recommended daily intake for copper and the lack of data on copper is therefore considered acceptable.

2.2.1.6 Reproduction toxicity

The overall NOAEL for developmental effects was 0.5 mg/kg bw/day based on the oral rabbit study with zinc pyrithione and the overall NOAEL for fertility was 0.7 mg/kg bw/day. It cannot be excluded that the pyrithione might cause reprotoxic effects even though the malformations observed occurred parallel to maternal toxicity. Examples of malformation occurring that is not considered to be due to maternal toxicity is; cleft plate, microglossia, malformed testis and bent limb bone. RMS therefore suggests a classification with Repro. R63 category 3. Moreover, similarly effects on pups were noted at doses which also resulted in parental toxicity. These effects were observed as reduced body weight gain and food consumption, atrophy of hind limb muscles with related hind limb paralysis/impairment of movement – all effects typically seen in the subchronic and chronic studies - as well as reduced kidney and epididymes weights and increased uterus and spleen weights.

2.2.1.7 Neurotoxicity

The pyrithiones seems to have a neurotoxic effect as ataxia and hind limb paralysis was seen in many studies. NOAEL was found to be 1.25 mg/kg bw/day based on toxic effects seen at 2.25 mg/kg bw/day in a 90 day neurotoxicity study with copper pyrithione on rat. The value was based on the sacrifice of one female in moribund condition, suffering from ataxia, muscle fibre atrophy and varying degrees of myositis, muscle fibre necrosis and muscle fibre degeneration.

Measurements of AChE activity was not done despite it would have been valuable since Copper pyrithione has been shown to cause decreases in the activity of this enzyme in fish.

In a single dose 14-day neurotoxicity study with zinc pyrithione and rats, mortality and reduced body weight and food consumption were noted in addition to clinical signs consisting

Copper pyrithione	Product type 21	7th BPR Meeting Sept 2014

of dehydration, urine stained abdominal fur, soft or liquid faeces and a few incidences of chromorhinorrhea and localized alopecia on the underside. The major neurotoxic finding was an effect on movement. The motor activity measurements revealed significant decreases in the number of movements and the total time spent in movement for male and female rats at 75 and 150 mg/kg when tested one hour post dosage. Female rats at 25 mg/kg also exhibited a statistically significant decrease in both parameters at one hour post dosage. Clinical chemistry was not investigated but might have given valuable information. In spite of the apparent effect on movements seen in females, the RMS considers the NOAEL to be 25 mg/kg bw in the absence of other supporting information.

2.2.1.8 Medical data

Each employee in contact with copper pyrithione undergoes a detailed physical examination once every two years. During 30 years of manufacturing experience with pyrithiones, minor transient mucous membrane irritation has been noted but no neurological abnormalities have been identified.

2.2.1.9 Livestock and pets

Due to the expected use of copper pyrithione exposure to live stock and pets are not expected and has not been considered in this report.

2.2.1.10 Acceptable daily intake (ADI) and acute reference dose (ARfD)

ADI and ARfD needs to be established if the active substance will enter the food chain. Copper pyrithione is intended to be used in antifouling paints and in aquaculture for treatment of fishing nets. The latter field of use may result in exposure of copper pyrithione to fish and shellfish, and therefore ARfD and ADI has been established. The ARfD is 0.02 mg/kg bw/day based on early effects (after 2.5 hours); ataxia in hind limb and whole body tremor, seen at LOAEL in a 90 day oral rat study with sodium pyrithione and a safety factor of 100 (10 x 10 for inter-and intra-species variability). The ARfD was used for risk calculation of children licking the hand after having touched wet and dry antifouling paint on boats. The ADI is 0.0025 mg/kg bw/day based on two chronic oral rat studies with sodium pyrithione where LOAEL was 0.5 mg/kg bw/day based on nerve degeneration and muscle atrophy. An extra safety factor two was used to extrapolate from LOAEL to NOAEL together with a safety factor of 100 (10 x 10 for inter-and intra-species variability).

2.2.1.11 Acceptable Exposure Level (AEL)

At TM I 2012 it was decided that route-specific AELs should be set for copper pyrithione, i.e. one inhalation and one dermal AEL for short-term, medium-term and long-term exposure respectively. However, as it was impossible to estimate a dermal AEL due to lack of dermal absorption data the WG II-meeting in Mars 2014 decided that the dermal exposure should be covered by the oral AEL. The dermal short and medium term AEL is therefore set to 0.005 mg/kg bw/day based on all oral copper pyrithione, zinc pyrithione and sodium pyrithione subacute, subchronic, teratogenicity and 2-generation studies available to RMS, where the overall NOAEL was 0.005. The safety factor of 100 was used. The dermal short term AEL was decided to be the same as the dermal medium AEL, and thereby lower than the ARfD, as exposure directly into the bloodstream seems to be a more toxic exposure route than

the oral exposure that passes the liver before entering the bloodstream. The long term dermal AEL is considered to be the same as ADI which is 0.0025 mg/kg bw/day.

The short and medium term inhalation AEL is 0.002 mg/kg bw/day. The AEL derives from a NOAEL, 0.38 mg/kg bw/day, in a 28 day rat inhalation study were death of unexplained cause was seen at LOAEL, applying a safety factor of 200.

The inhalation long term AEL is based on the same study as the short and medium term AELs but an extra safety factor of 4 has been added to extrapolate from short to long time exposure, resulting in a long term inhalation AEL of 0.001 mg/kg bw/day. An external reference value (AEC) was derived from the local NOAEC of 0.0005 mg/mL in the 28 day rat inhalation study. The AF factor of 10 for intra species variation was used together with the factor for interspecies variation in toxicodynamics (2.5), resulting in a total safety factor 25 which gives a local AEC of 0.0002 mg/L (0.02 mg/m^3).

2.2.2 Human health exposure assessment

2.2.2.1 Exposure of manufacturers

Exposure of workers at the production/formulation plants is not considered in the risk assessment as it is assumed to be within the scope of other legislation on worker safety.

2.2.2.2 Exposure of professionals

Six antifouling products were evaluated in this report. The products are mainly intended to be used by professionals. The professional users can be divided into six sub-groups, each sub-group either forming part of the team applying paint to the surface or being workers removing paint during maintenance of a previously painted surface. The potentially exposed groups are the following:

- Sprayer; high-pressure spraying for surface coating.
- Painter using brush and roller.
- Potman; mixing and loading of antifoulant from supply container to high-pressure pump reservoir ensuring continuous supply to the spray gun.
- Ancillary worker; keeping paint lines free, manoeuvring mobile spray platforms as well as other tasks intended to aid the sprayer's job. The exposure risk for the ancillary worker is covered by the risk for the sprayer.
- Blast worker; performs a total or partial removal of the expired coating from the ship hull using abrasive or high-pressure water.
- Grit filler; mixing and loading of grit from supply container to high-pressure pump reservoir ensuring continuous supply to the spray gun.

One dummy product intended to be used in aquaculture has also been evaluated. Large woven nets are submerged into vessels containing the biocidal product. The net is allowed to dry before being lifted to a packing area where it is manually packed into plastic cover packing for despatch to the deployment area where the net normally is stretched out on a barge on the sea area and a team of up to six individuals manually deploy the net into the sea. The net is normally suspended from flotation buoys and anchored to the sea bed in the area designated

Copper pyrithione	Product type 21	7th BPR Meeting Sept 2014

for the aquaculture. Bystanders are not supposed to come in contact with the nets. The use of copper pyrithione treated nets may result in exposure of copper pyrithione to fish and shellfish. RMS has done a rough calculation showing that the possible exposure from eating fish or oysters is well below the ADI for copper pyrithione.

The following six products have been evaluated in this rapport:

Table 2.2.2.2 The potential exposure to professional users

For a scenario to be accepted the total systemic exposure has to be $\leq 100\%$ of dermal and inhalation AELs and also $\leq 100\%$ of the local inhalation AEL. The values in the acceptable scenarios have been underlined.

Exposure Scenar	rio	Exposure route	Estimated exposure	Exposure % of AEL	Total systemic exposure % of dermal and inhalation AELs
Application by	Tier 1	Systemic via	0.4577	9153	9964
airless spray	No PPE	dermal route	mg/kg bw/day		
Risk assessment		Systemic via	0.0162	811	
according to		inhalation route	mg/kg bw/day		
Model 3TNsG		Local inhalation	0.260	1298	
on Human		concentration	mg/m ³		
Exposure, 2002.	Tier 2	Systemic via	0.00613	123	143
	protective	dermal route	mg/kg bw/day		
	gloves double	Systemic via	0.000405	20	
	coverall (1 %	inhalation route	mg/kg bw/day		
	penetration),	Local inhalation	0.00649	32.4	
	respiratory	concentration	mg/m ³		
	mask with APF				
	40				
Painter using	Tier 1	Systemic via	0.0556	1111	1505
brush and	no PPE	dermal route	mg/kg bw/day		
roller		Systemic via	0.00788	394	
		inhalation route	mg/kg bw/day		

		1	1		
Risk assessment		Local inhalation	0.00420	21	
according to		concentration	mg/m ³		
Links et at,	Tier 2	Systemic via	0.0000095	0.18900	<u>40</u>
2007.	Safety shoes,	dermal route	mg/kg bw/day		
	one overall				
	(Tyvek® or				-
	cotton) or	Systemic via	0.000788	39	
	sometimes	inhalation route	mg/kg bw/day		
	normal clothing				
	(e.g. trousers				
	and a jumper),	Local inhalation	0.000420	<u>2</u>	
	nitril rubber	concentration	mg/m ³		
	gloves,				
	respiratory				
	mask with APF				
	10				
Mixing and	Tier 1	Systemic via	0.1647	3294	3383
loading (pot-	no PPE	dermal route	mg/kg bw/day		
man)		Systemic via	0.00178	89	
Risk assessment		inhalation route	mg/kg bw/day		
according to		Local inhalation	0.0285	143	
Model 4		concentration	mg/m^3	145	
Consumer	Tier 29	Systemic via	0.0160	321	330
product	Protective	dermal route	mg/kg bw/day	521	550
painting TNsG	gloves: single	definal foute	mg/kg 0w/ddy		
on Human	coverall (4 %	Systemic via	0.000178	9	
Exposure 2002	penetration)	inhalation route	mg/kg bw/day		
Enposure, 2002.	Facial mask				
	with ADE 10	Local inhalation	0.00285	14	
	with ATT 10	concentration	mg/m ³		
	T'	S	0.0122	246	255
	Drotootivo	dormal routa	0.0125	240	255
	Plotective	Sustancia mia		0	-
	gioves, double	Systemic via	0.000178	9	
	coverali (1 %			14	
	Equip period mode	Local innalation	0.00285	14	
	racial mask	concentration	mg/m ³		
	Tior?o	Systemia via	0.0122	246	249
	Protective	dermal routo	0.0123	240	240
	aloves: double	Sustania -i-	0 0000445	2	-
	gioves, double	systemic via	0.0000445		
	nonotration)	Innalation route	mg/kg bw/day		
	penetration),	Local inhalation	0.0007125	4	
	Facial mask	concentration	mg/m ³		
	with APF 40				

Removal paint	Tier 1	Systemic via	0.05832	1166	1941
Risk assessment	no PPE	dermal route	mg/kg bw/day		
according to		Systemic via	0.015491	775	
"HEEG		inhalation route	mg/kg bw/day		
Opinion on the		Local inhalation	0.24786	1239	
paper by Links		concentration	mg/m ³		
et al. 2007 on	Tier 2	Systemic via	0.007203	144	163
occupational	waterproof	dermal route	mg/kg bw/day		
exposure during	overalls, strong	Systemic via	0.000387	19	
application and	protective	inhalation route	mg/kg bw/day		
removal of	gloves,	Local inhalation	0.006197	31	
antifouling	Facial mask	concentration	mg/m ³		
paints" that was	with APF 40				
endorsed at TM					
IV 2012					
			r	r	r
Grit fillers	Tier 1	Systemic via	0.209223	4184	5997
Risk assessment	no PPE	dermal route	mg/kg bw/day		
according to		Systemic via	0.036248	1812	
"HEEG		inhalation route	mg/kg bw/day		
Opinion on the		Local inhalation	0.57996	2900	
paper by Links		concentration	mg/m ³		
et al. 2007 on	Tier 2a	Systemic via	0.098852	1977	2022
occupational	Facial mask	dermal route	mg/kg bw/day		
exposure during	with APF 40	Systemic via	0.000906	45	
application and		inhalation route	mg/kg bw/day		
removal of		Local inhalation	0.014499	72	
antifouling		concentration	mg/m ³		
paints" that was	Tier 2b	Systemic via	0.007203	144	163
endorsed at TM	The same	dermal route	mg/kg bw/day		
IV 2012	exposure and	Systemic via	0.000387	10	
	type of PPE and	inhalation route	mg/kg bw/day	19	
	RPE as the sand	milatation foute	mg/kg 0w/day		
	blasting worker	Local inhalation	0.006197	31	
		concentration	mg/m ³		

Exposure Scenario	Exposure route	Estimated exposure	Exposure % of AEL	Total exposure % of dermal and inhalation AELs

Application by	Tier 1	Systemic via	0.8848	17696	19264
airless spray	No PPE	dermal route	mg/kg bw/day		
Risk assessment		Systemic via	0.0314	1568	
according to		inhalation route	mg/kg bw/day		
Model 3, TNsG		Local inhalation	0.5017	2509	
on Human		concentration	mg/m ³		
Exposure, 2002.	Tier 2	Systemic via	0.0118	237	276
	protective	dermal route	mg/kg bw/day		
	gloves double	Systemic via	0.00078	39	
	coverall (1 %	inhalation route	mg/kg bw/day		
	penetration),	Local inhalation	0.0125425	62.7	
	respiratory	concentration	mg/m ³		
	mask with APF				
	40				
				1	
Painter using	Tier 1	Systemic via	0.1074	2148	2909
brush and	no PPE	dermal route	mg/kg bw/day		1
roller		Systemic via	0.015	761	
Risk assessment		inhalation route	mg/kg bw/day		
according to		Local inhalation	0.00812	41	
Links et at,		concentration	mg/m ³		
2007.	Tier 2	Systemic via	0.0000183	0.36540	<u>76</u>
	Safety shoes,	dermal route	mg/kg bw/day		
	one overall				
	(Tyvek [®] or				+
	cotton) or	Systemic via	0.002	76	
	sometimes	inhalation route	mg/kg bw/day		
	normal clothing				
	(e.g. trousers	Local inhalation	0.000812	41	
	and a jumper),	concentration	0.000812 mg/m ³	41	
	nitril rubber	concentration	iiig/iii		
	gloves,				
	respiratory				
	mask with APF				
	10				
		~			
Mixing and	Tier 1	Systemic via	0.3184	6368	6541
loading (pot-	no PPE	dermal route	mg/kg bw/day		ł
man)		Systemic via	0.0034	172	
Risk assessment		inhalation route	mg/kg bw/day		
according to		Local inhalation	0.0551	276	
Model 4		concentration	mg/m ³		
Consumer	Tier 2a	Systemic via	0.0310	620	637
product		dermal route	mg/kg bw/day		
	1	1	1		1

painting,TNsG	Protective	Systemic via	0.00034	17	
on Human	gloves; single	inhalation route	mg/kg bw/day		
Exposure, 2002.	coverall (4 %				
	penetration),	Local inhalation	0.00551	27.6	
	Facial mask	concentration	mg/m ³		
	with APF 10				
	Tier 2b	Systemic via	0.0238	476	493
	Protective	dermal route	mg/kg bw/day		-
	gloves; double	Systemic via	0.00034	17	
	coverall (1 %	inhalation route	mg/kg bw/day		
	penetration),	Local inhalation	0.00551	27.6	
	Facial mask	concentration	mg/m ³		
	with APF 10				
	Tier2c	Systemic via	0.0238	476	480
	Protective	dermal route	mg/kg bw/day		
	gloves; double	Systemic via	0.00009	4	
	coverall (1 %	inhalation route	mg/kg bw/day		
	penetration),	Local inhalation	0.0013775	6.9	
	Facial mask	concentration	mg/m ³		
	with APF 40				
Removal paint	Tier 1	Systemic via	0.11016	2203	3666
Risk assessment	no PPE	dermal route	mg/kg bw/day		
according to		Systemic via	0.029261	1463	
"HEEG Opinion		inhalation route	mg/kg bw/day		
on the paper by		Local inhalation	0.46818	2341	
Links et al.		concentration	mg/m ³		
2007 on	Tier 2	Systemic via	0.013605	272	309
occupational	waterproof	dermal route	mg/kg bw/day		
exposure during	overalls, strong	Systemic via	0.000732	37	
application and	protective	inhalation route	mg/kg bw/day		
removal of	gloves,	Local inhalation	0.011705	59	
antifouling	Facial mask	concentration	mg/m ³		
paints" that was	with APF 40				
endorsed at TM					
IV 2012					
	Γ	Γ	I	T	1
Grit fillers	Tier 1	Systemic via	0.395199	7904	11327
Risk assessment	no PPE	dermal route	mg/kg bw/day		-
according to		Systemic via	0.068468	3423	
"HEEG Opinion		inhalation route	mg/kg bw/day		
on the paper by		Local inhalation	1.09548	5477	
Links et al.		concentration	mg/m ³		
2007 on	Tier 2a	Systemic via	0.186721	3734	3820
occupational		dermal route	mg/kg bw/day		

exposure during application and	Facial mask with APF 40	Systemic via inhalation route	0.001712 mg/kg bw/day	86	
removal of antifouling		Local inhalation concentration	0.027387 mg/m ³	137	
paints" that was endorsed at TM	Tier 2b The same	Systemic via dermal route	0.013605 mg/kg bw/day	272	309
IV 2012	exposure and type of PPE and RPE as the sand	Systemic via inhalation route	0.000732 mg/kg bw/day	37	
	blasting worker	Local inhalation concentration	0.011705 mg/m ³	59	

Exposure Scenar	io	Exposure route	Estimated exposure	Exposure % of AEL	Total systemic exposure % of dermal and inhalation AELs
Application by airless spray Risk assessment according to	Tier 1 No PPE	Systemic via dermal route Systemic via inhalation route	1.7798 mg/kg bw/day 0.0387 mg/kg bw/day	35595 1934	37487
Model 3, TNsG on Human		Local inhalation concentration	0.6055 mg/m ³	3028	
Exposure, 2002.	Tier 2 protective gloves double coverall (1 %	Systemic via dermal route Systemic via inhalation route	0.0238 mg/kg bw/day 0.000946 mg/kg bw/day	477 47	524
	penetration), respiratory mask with APF 40	Local inhalation concentration	0.0151375 mg/m ³	76	
				1	
Painter using brush and roller	Tier 1 no PPE	Systemic via dermal route Systemic via	0.2160 mg/kg bw/day 0.0184	4321 920	5240
Risk assessment according to		inhalation route Local inhalation concentration	mg/kg bw/day 0.0098mg/m ³	49	

Links et at, 2007.	Tier 2 Safety shoes,	Systemic via dermal route	0.0000368 mg/kg bw/day	0.73500	<u>93</u>
	one overall				
	(Tyvek® or	Systemic via	0.00184	92	-
	collofi) or	inhalation route	mg/kg bw/day	12	
	normal clothing				
	(e.g. trousers				
	and a jumper).	Local inhalation	0.00098	<u>5</u>	
	nitril rubber	concentration	mg/m ³		
	gloves,				
	respiratory				
	mask with APF				
	10				
Mixing and	Tier 1	Systemic via	0.6405	12810	13018
loading (pot-	no PPE	dermal route	mg/kg bw/day		-
man)		Systemic via	0.00416	208	
Risk assessment		inhalation route	mg/kg bw/day		
according to		Local inhalation	0.0665	333	
Model 4		concentration	mg/m ³		
Consumer	Tier 2a	Systemic via	0.0624	1247	1268
product	Protective	dermal route	mg/kg bw/day		
painting, I NsG	gloves; single	Systemic via	0.000416	21	
Exposure 2002	coverall (4 %	inhalation route	mg/kg bw/day	21	
Exposure, 2002.	penetration),				
	with APE 10	Local inhalation	0.00665	33.3	
	with reference	concentration	mg/m ³		
	Tier 2h	Systemic via	0.0479	958	978
	Protective	dermal route	mg/kg bw/day	250	510
	gloves: double	Systemic via	0.000416	21	
	coverall (1 %	inhalation route	mg/kg bw/day		
	penetration),	Local inhalation	0.00665	33.3	
	Facial mask	concentration	mg/m ³		
	with APF 10				
	Tier2c	Systemic via	0.0479	958	963
	Protective	dermal route	mg/kg bw/day		
	gloves; double	Systemic via	0.000104	5	
	coverall (1 %	inhalation route	mg/kg bw/day		
	penetration),	Local inhalation	0.0016625	8.3	
	Facial mask	concentration	mg/m ³		
	with APF 40				
D	T1	<i>a</i>	0.0505	5104	
Removal paint	Tier 1	Systemic via	0.2592	5184	7250
	no PPE	dermal route	mg/kg bw/day		

Risk assessment		Systemic via	0.04131	2065	
according to		inhalation route	mg/kg bw/day		
"HEEG		Local inhalation	0.66096	3305	
Opinion on the		concentration	mg/m ³		
paper by Links	Tier 2	Systemic via	0.032011	640	692
et al. 2007 on	waterproof	dermal route	mg/kg bw/day		
occupational	overalls, strong	Systemic via	0.001033	52	
exposure during	protective	inhalation route	mg/kg bw/day		
application and	gloves,	Local inhalation	0.016524	83	
removal of	Facial mask	concentration	mg/m ³		
antifouling	with APF 40				
paints" that was					
endorsed at TM					
IV 2012					
		Γ	Γ	1	l
Grit fillers	Tier 1	Systemic via	0.92988	18598	23431
Risk assessment	no PPE	dermal route	mg/kg bw/day		
according to		Systemic via	0.09666	4833	
"HEEG		inhalation route	mg/kg bw/day		
Opinion on the		Local inhalation	1.54656	7733	
paper by Links		concentration	mg/m ³		
et al. 2007 on	Tier 2a	Systemic via	0.439344	8787	8908
occupational	Facial mask	dermal route	mg/kg bw/day		
exposure during	with APF 40	Systemic via	0.002417	121	
application and		inhalation route	mg/kg bw/day		
removal of		Local inhalation	0.038664	193	
antifouling		concentration	mg/m ³		
paints" that was	Tier 2b	Systemic via	0.032011	640	692
endorsed at TM	The same	dermal route	mg/kg bw/day		
IV 2012	exposure and	Systemic via	0.001033	52	
	type of PPE and	inhalation routo	0.001035	52	
	RPE as the sand	milatation route	mg/kg 0w/day		
	blasting worker	Local inhalation	0.016524	83	
		concentration	mg/m ³		

Arch, Dummy product 4%						
Exposure Scenario	Exposure	Estimated	Exposure	Total		
	route	exposure	% of AEL	systemic		
				exposure		
				% of dermal		
				and		
				inhalation		
				AELs		

Application by	Tier 1	Systemic via	0.4068	8136	10299
airless spray	No PPE	dermal route	mg/kg bw/day		
Risk		Systemic via	0.04325	2163	
assessment		inhalation route	mg/kg bw/day		
according to		Local inhalation	0.692	3460	
Model 3, TNsG		concentration	mg/m ³		
on Human	Tier 2	Systemic via	0.0054	109	163
Exposure,	protective	dermal route	mg/kg bw/day		
2002.	gloves double	Systemic via	0.00108	54	
	coverall (1 %	inhalation route	mg/kg bw/day		
Assuming 1%	penetration),	Local inhalation	0.0173	87	
dermal	respiratory	concentration	mg/m ³		
absorption	mask with APF				
	40				
Application by	Tier 1	Systemic via	0.2034	4068	6231
airless spray	No PPE	dermal route	mg/kg bw/day		
Risk		Systemic via	0,04325	2163	
assessment		inhalation route	mg/kg bw/day		
according to		Local inhalation	0.692	3460	
TNsG on		concentration	mg/m ³		
Human	Tier 2	Systemic via	0.0027	54	109
Exposure,	protective	dermal route	mg/kg bw/day		
2002.	gloves double	Systemic via	0.00108	54	
	coverall (1 %	inhalation route	mg/kg bw/day		
Assuming	penetration),	Local inhalation	0.0173	87	
0.5% dermal	respiratory	concentration	mg/m ³		
absorption	mask with APF				
	40				
Painter using	Tier 1	Systemic via	0.0494	988	2038
brush and	no PPE	dermal route	mg/kg bw/day		
roller		Systemic via	0.0210	1050	
Risk		inhalation route	mg/kg bw/day		
assessment		Local inhalation	0.0112	56	
according to		concentration	mg/m ³		
Links et at,	Tier 2a	Systemic via	0.0000084	0.16800	105
2007.	Safety shoes,	dermal route	mg/kg bw/day		
	one overall				
Assuming 1%	(Tyvek® or				4
dermal	cotton) or	Systemic via	0.00210	105	
absorption	sometimes	inhalation route	mg/kg bw/day		
	normal clothing				

	1				
	(e.g. trousers	Local inhalation	0.00112	6	
	and a jumper)	concentration	mg/m ³		
	nitrile rubber		8		
	alama				
	gloves,				
	respiratory				
	mask with APF				
	10				
	Tier 2b	Systemic via	0.0000084	0.16800	<u>26</u>
	Safety shoes.	dermal route	mg/kg bw/dav		_
	one overall		<i>6 8 m m j</i>		
	(Tuwele® or				
		Systemic via	0.000525	26	
	cotton) or	inholation routo	ma/lea huu/day	20	
	sometimes	initialiation foute	mg/kg Uw/day		
	normal clothing				
	(e.g. trousers	· · · · · · ·	0.0000000 / 3		
	and a jumper),	Local inhalation	0.000280mg/m ³	1 <u>1</u>	
	nitrile rubber	concentration			
	gloves				
	reconingtory				
	mask with APF				
	40				
	l	l		1	
Mixing and	Tier 1	Systemic via	0.1464	2928	3166
loading (pot-	no PPE	dermal route	mg/kg bw/day		
man)		Systemic via	0.00475	238	
Risk		inhalation route	mg/kg bw/day		
assessment		Local inhalation	0.076	380	
according to		concentration	$m\alpha/m^3$	200	
Model 4	Tion 2a	Sustantia ria	0.0142	295	200
Consumer	Tier 2a	Systemic via	0.0145	285	309
Consumer	Protective	dermal route	mg/kg bw/day		
product	gloves; single	Contanti a cita	0.000475	24	
painting,TNsG	coverall (4 %	Systemic via	0.000475	24	
on Human	penetration),	innalation route	mg/kg bw/day		
Exposure,	Facial mask	T 1 in h - 1 - ti - n	0.0076	20	
2002.	with APF 10	Local innalation	0.0076	38	
		concentration	mg/m ³		
Assuming 1%	Tion 34	Sustania	0.011200	210	243
dermal	Tier 20	Systemic via	0.011209	219	243
absorption	Protective	dermal route	mg/kg bw/day		
absoi puoli	gloves; double	Systemic via	0.000475	24	
	coverall (1 %	inhalation route	mg/kg bw/day		
	penetration),	Local inhalation	0.0076	38	
	Facial mask	concentration	mg/m ³		
	with APF 10		5		
	Tier2c	Systemic via	0.0109	219	225
	- 101 20	dermal routo	ma/ka hw/dov		
	1	ucinal toute	mg/kg Uw/udy	1	1

	Protective	Systemic via	0.000119	6	
	gloves; double	inhalation route	mg/kg bw/day		
	coverall (1 %	Local inhalation	0.0019	10	
	penetration),	concentration	mg/m ³		
	Facial mask				
	with APF 40				
Mixing and	Tier 1	Systemic via	0.0732	1464	1702
loading (pot-	no PPE	dermal route	mg/kg bw/day		
man)		Systemic via	0.00475	238	
Risk		inhalation route	mg/kg bw/day		
assessment		Local inhalation	0.076	380	
according to		concentration	mg/m ³		
Model 4	Tier 2a	Systemic via	0.0071	143	166
Consumer	Protective	dermal route	mg/kg bw/day		
product	gloves; single	Systemic via	0.000475	24	
painting,TNsG	coverall (4 %	inhalation route	mg/kg bw/dav		
on Human	penetration).	Local inhalation	0.0076	38	
Exposure,	Facial mask	concentration	mg/m^3	•••	
2002.	with APF 10	concentration	ing/in		
	Tier 2h	Systemic via	0.0055	109	133
Assuming	Protective	dermal route	mg/kg hw/day	109	100
0.5% dermal	gloves: double	Systemic via	0.000475	24	
absorption	coverall (1 %	inhalation route	0.000475	24	
Let	penetration)	Local inhalation	0.0076	38	
	Facial mask		0.0070	50	
	with APE 10	concentration	mg/m		
	Tion20	Sustamia via	0.0055	100	115
	Drotoctivo	dormal routo	0.0055	109	115
	riolective	Sustania via	0 000110	(-
	gioves, double	Systemic via	0.000119	0	
	coverall (1 %		mg/kg bw/day	10	
	Facial mark	Local innalation	0.0019	10	
	Facial mask	concentration	mg/m ³		
	with APF 40				
D	T ! 1	G	0.0540	1000	2222
Removal paint	Tier I	Systemic via	0.0540	1080	3232
Risk	no PPE	dermal route	mg/kg bw/day		
assessment		Systemic via	0.043031	2152	
according to		inhalation route	mg/kg bw/day		
"HEEG		Local inhalation	0.6885	3443	
Opinion on the		concentration	mg/m ³		
paper by Links	Tier 2	Systemic via	0.006669	133	187
et al. 2007 on	waterproof	dermal route	mg/kg bw/day		-
occupational	overalls, strong	Systemic via	0.001076	54	
exposure during	protective	inhalation route	mg/kg bw/day		
application and	gloves,	Local inhalation	0.017213	86	
removal of		concentration	mg/m ³		

antifouling	Facial mask				
paints" that was	with APF 40				
endorsed at TM					
IV 2012					
Assuming 10/					
Assuming 1 %					
absorption					
Removal paint	Tier 1	Systemic via	0.0270	540	2692
Risk	no PPE	dermal route	mg/kg bw/day	5.10	2072
assessment		Systemic via	0.043031	2152	
according to		inhalation route	mg/kg bw/day		
"HEEG		Local inhalation	0.6885	3443	
Opinion on the		concentration	mg/m ³		
paper by Links	Tier 2	Systemic via	0.003335	67	120
et al. 2007 on	waterproof	dermal route	mg/kg bw/day		
occupational	overalls, strong				
exposure during	protective				
application and	gloves,				
removal of	Facial mask				
antifouling	with APF 40				
paints" that was		Systemic via	0.001076	54	
endorsed at TM		inhalation route	mg/kg bw/day		
IV 2012		Local inhalation	0.017213	86	
		concentration	mg/m ³		
Assuming					
0.5% dermal					
absorption					
Grit fillers	Tier 1	Systemic via	0.193725	3875	8909
Risk	no PPE	dermal route	mg/kg bw/day		
assessment		Systemic via	0.1006875	5034	
according to		inhalation route	mg/kg bw/day		
"HEEG		Local inhalation	1.611	8055	
Opinion on the		concentration	mg/m ³		
paper by Links	Tier 2a	Systemic via	0.09153	1831	1956
et al. 2007 on	Facial mask	dermal route	mg/kg bw/day		
occupational	with APF 40	Systemic via	0.00251719	126	
exposure during		inhalation route	mg/kg bw/day		
application and		Local inhalation	0.040275	201	
removal of		concentration	mg/m ³		
anuiouiing	Tier 2b	Systemic via	0.006669	133	187
endorsed at TM	The same	dermal route	mg/kg bw/day		
IV 2012	exposure and	Systemic via	0.001076	54	
.,	type of PPE	inhalation route	mg/kg bw/day		

L

Assuming 1% dermal absorption	and RPE as the sand blasting worker	Local inhalation concentration	0.017213 mg/m ³	86	
Grit fillers Risk	Tier 1 no PPE	Systemic via dermal route	0.0968625 mg/kg bw/day	1937	6972
assessment according to "HEEG		Systemic via inhalation route	0.1006875 mg/kg bw/day	5034	
Opinion on the paper by Links		Local inhalation concentration	1.611 mg/m ³	8055	
et al. 2007 on occupational exposure during application and removal of	Tier 2a Facial mask with APF 40	Systemic via dermal route	0.045765 mg/kg bw/day	915	1041
antifouling paints" that was		Systemic via inhalation route	0.00251719 mg/kg bw/day	126	
IV 2012		Local inhalation concentration	0.040275 mg/m ³	201	
Assuming 0.5% dermal absorption	Tier 2b The same exposure and type of PPE and RPE as the sand blasting worker	Systemic via dermal route	0.003335 mg/kg bw/day	67	120
		Systemic via inhalation route	0.001076 mg/kg bw/day	54	
		Local inhalation concentration	0.017213 mg/m ³	86	

Exposure Scenario	Exposure route	Estimated exposure	Exposure % of AEL	Total systemic exposure % of dermal and inhalation AELs			

Application by	Tior 1	Systemic via	0 2447	4894	7062
airloss spray	No PPE	dermal route	ma/ka hw/day		/002
Diek	NOTIE	Sustamia via	0.0424	2219	
NISK		systemic via	0.0434	2218	
assessment			mg/kg bw/day	2460	
according to		Local inhalation	0.693/3	3469	
Model 3, 1 NSG		concentration	mg/m ³		
on Human	Tier 2	Systemic via	0.0033	66	120
Exposure,	protective	dermal route	mg/kg bw/day		-
2002.	gloves double	Systemic via	0.00108	54	
	coverall (1 %	inhalation route	mg/kg bw/day		
	penetration),	Local inhalation	0.017343	86.7	
	respiratory	concentration	mg/m ³		
	mask with APF				
	40				
Painter using	Tier 1	Systemic via	0.0297	594	1647
brush and	no PPE	dermal route	mg/kg bw/day		
roller		Systemic via	0.02105	1053	
Risk		inhalation route	mg/kg bw/day		
assessment		Local inhalation	0.011228	56	
according to		concentration	mg/m ³		
Links et at,	Tier 2	Systemic via	0.0000051	0.1	105
2007.	Safety shoes.	dermal route	mg/kg bw/day		
	one overall		8,8,,)		
	(Tyyek® or				
		Systemic via	0.002105	105	
	cotton) or	bystenne via			
	cotton) or	inhalation route	mg/kg bw/day		
	cotton) or sometimes	inhalation route	mg/kg bw/day		
	cotton) or sometimes normal	inhalation route	mg/kg bw/day		
	cotton) or sometimes normal clothing (e.g.	inhalation route	mg/kg bw/day 0.0011228	5.6	
	cotton) or sometimes normal clothing (e.g. trousers and a	Local inhalation concentration	mg/kg bw/day 0.0011228 mg/m ³	5.6	
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril	Local inhalation concentration	mg/kg bw/day 0.0011228 mg/m ³	5.6	
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves,	Local inhalation concentration	mg/kg bw/day 0.0011228 mg/m ³	5.6	
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves, respiratory	Local inhalation concentration	mg/kg bw/day 0.0011228 mg/m ³	5.6	
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves, respiratory mask with APF	Local inhalation concentration	mg/kg bw/day 0.0011228 mg/m ³	5.6	
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves, respiratory mask with APF 10	Local inhalation concentration	mg/kg bw/day 0.0011228 mg/m ³	5.6	
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves, respiratory mask with APF 10 Tier 2b	Systemic via inhalation route Local inhalation concentration Systemic via	mg/kg bw/day 0.0011228 mg/m ³ 0.0000051mg/kg	5.6 0.1	<u>26</u>
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves, respiratory mask with APF 10 Tier 2b Safety shoes,	Local inhalation concentration Systemic via dermal route	mg/kg bw/day 0.0011228 mg/m ³ 0.0000051mg/kg bw/day	5.6 0.1	<u>26</u>
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves, respiratory mask with APF 10 Tier 2b Safety shoes, one overall	inhalation route Local inhalation concentration Systemic via dermal route	mg/kg bw/day 0.0011228 mg/m ³ 0.0000051mg/kg bw/day	5.6 0.1	<u>26</u>
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves, respiratory mask with APF 10 Tier 2b Safety shoes, one overall (Tyvek® or	inhalation route Local inhalation concentration Systemic via dermal route	mg/kg bw/day 0.0011228 mg/m ³ 0.0000051mg/kg bw/day	5.6 0.1	<u>26</u>
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves, respiratory mask with APF 10 Tier 2b Safety shoes, one overall (Tyvek® or cotton) or	Systemic via inhalation route Local inhalation concentration Systemic via dermal route Systemic via	mg/kg bw/day 0.0011228 mg/m ³ 0.0000051mg/kg bw/day 0.000526	5.6 0.1 26	<u>26</u>
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves, respiratory mask with APF 10 Tier 2b Safety shoes, one overall (Tyvek® or cotton) or sometimes	Systemic via inhalation route Local inhalation concentration Systemic via dermal route Systemic via inhalation route	mg/kg bw/day 0.0011228 mg/m ³ 0.0000051mg/kg bw/day 0.000526 mg/kg bw/day	5.6 0.1 26	<u>26</u>
	cotton) or sometimes normal clothing (e.g. trousers and a jumper), nitril rubber gloves, respiratory mask with APF 10 Tier 2b Safety shoes, one overall (Tyvek® or cotton) or sometimes normal	inhalation route Local inhalation concentration Systemic via dermal route Systemic via inhalation route	mg/kg bw/day 0.0011228 mg/m ³ 0.0000051mg/kg bw/day 0.000526 mg/kg bw/day	5.6 0.1 26	<u>26</u>

	alathing (a g	I agai inhelation	0.000281	14	
	turner and a		0.000281	<u>1.4</u>	
	trousers and a	concentration	mg/m ³		
	jumper), nitril				
	rubber gloves),				
	respiratory				
	mask with APF				
	40				
	1	1		-	
Mixing and	Tier 1	Systemic via	0.0881	1761	999
loading (pot-	no PPE	dermal route	mg/kg bw/day		
man)		Systemic via	0.008	238	
Risk		inhalation route	mg/kg bw/dav		
assessment		Local inhalation	0.07619	381	
according to		concentration	ma/m^3	001	
Model 4	Tion 2a	Sustamia via	0.0096	171	105
Consumer	Tier Za	Systemic via	0.0080	1/1	195
	Protective	dermal route	mg/kg bw/day		
	gloves; single	Systemic via	0.00048	24	
painting, I NsG	coverall (4 %	inholation routo	0.00048	24	
on Human	penetration),	innalation foute	ing/kg bw/day		
Exposure,	Facial mask	Local inhalation	0.007619	38.1	
2002.	with APF 10	concentration	m_{g}/m^{3}	50.1	
		concentration	ing/in		
	Tier 2b	Systemic via	0.0066	132	155
	Protective	dermal route	mg/kg bw/day		
	gloves; double	Systemic via	0.00048	24	
	coverall (1 %	inhalation route	mg/kg bw/day		
	penetration).	Local inhalation	0.007619	38.1	
	Facial mask	concentration	$m\sigma/m^3$	••••	
	with APF 10	concentration	ing, in		
	Tier2c	Systemic via	0.0066	132	138
	Protective	dermal route	mg/kg bw/day		
	gloves: double	Systemic via	0.00012	6	
	coverall (1 %	inhalation route	mg/kg bw/day	0	
	penetration)	L a cal inh alation	0.00100475	0.5	
	Equip Formation Formation Formation Formation		0.00190473	9.5	
		concentration	mg/m ³		
	with APF 40				
		~			
Removal	Tier 1	Systemic via	0.032724	654	2828
paint	no PPE	dermal route	mg/kg bw/day		
Risk		Systemic via	0.043462	2173	
assessment		inhalation route	mg/kg bw/day		
according to		Local inhalation	0.695385	3477	
"HEEG		concentration	mg/m ³		
Opinion on the	Tier 2	Systemic via	0.004041	81	135
paper by Links		dermal route	mg/kg bw/day		

Product type 21

et al. 2007 on	waterproof	Systemic via	0.001087	53.4	
occupational	overalls, strong	inhalation route	mg/kg bw/day		
exposure	protective	Local inhalation	0.017385	<u>87</u>	
during	gloves,	concentration	mg/m ³		
application and	Facial mask				
removal of	with APF 40				
antifouling					
paints" that was					
endorsed at TM					
IV 2012					
Grit fillers	Tier 1	Systemic via	0.117397	2348	7433
Risk	no PPE	dermal route	mg/kg bw/day		
assessment		Systemic via	0.101694	5085	
according to		inhalation route	mg/kg bw/day		
"HEEG		Local inhalation	1.62711	8136	
Opinion on the		concentration	mg/m ³		
paper by Links	Tier 2a	Systemic via	0.055467	1109	1236
et al. 2007 on	Facial mask	dermal route	mg/kg bw/day		
occupational	with APF 40	Systemic via	0.002542	127	
exposure		inhalation route	mg/kg bw/day		
during		Local inhalation	0.040678	203	
application and		concentration	mg/m ³		
removal of	Tier 2b	Systemic via	0.004041	0.81	135
antifouling	The same	dermal route	mg/kg bw/day		
paints" that was	exposure and	Sautani i	0.001087	52.4	
endorsed at TM	type of PPE	Systemic via	0.001087	55.4	
IV 2012	and RPE as the	inhalation route	mg/kg bw/day		
	sand blasting	Local inhalation	0.017385	<u>87</u>	
	worker	concentration	mg/m ³		

Arch, Dummy product 2%							
Exposure Scenar	io	Exposure route	Estimated exposure	Exposure % of AEL	Total systemic exposure % of dermal and inhalation AELs		
Net coating	Tier 2a	Systemic via dermal route	0.0475 mg/kg bw/day	951	955		

				1	
Risk assessment	Protective	Systemic via	0.00008	4	
according to	gloves	inhalation route	mg/kg bw/day		
Model 4 –		Local inhalation	0.004	20	
Professionals:		concentration	mg/m ³		
Aquaculture	Tier 2b	Systemic via	0.0051	102	<u>106</u>
(TNsG, 2002)	(protective	dermal route	mg/kg bw/day		
	gloves, single	Systemic via	0.00008	4	
Assuming 1%	coverall (4 %	inhalation route	mg/kg bw/day		
dermal	penetration)	Local inhalation	0.004	0.8	
absorption		concentration	mg/m ³	—	
	Tier 2c	Systemic via	0.0038	76	80
	(protective	dermal route	mg/kg bw/day		
	gloves, double	Systemic via	0.00008	4	
	coverall (1 %	inhalation route	mg/kg bw/day		
	penetration)	Local inhalation	0.004	0.8	
	· /	concentration	mg/m^3		
			6	I	
				1	
Net deployment	Tier 2a	Systemic via	0.0078	155	155
Net deployment Risk assessment	Tier 2a Protective	Systemic via dermal route	0.0078 mg/kg bw/day	155	155
Net deployment Risk assessment according to	Tier 2a Protective gloves	Systemic via dermal route Systemic via	0.0078 mg/kg bw/day 	155	155
Net deployment Risk assessment according to Model 2 – Professionals:	Tier 2a Protective gloves	Systemic via dermal route Systemic via inhalation route	0.0078 mg/kg bw/day 	155	155
Net deployment Risk assessment according to Model 2 – Professionals: installing fish	Tier 2a Protective gloves	Systemic via dermal route Systemic via inhalation route Local inhalation	0.0078 mg/kg bw/day 	155	155
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG,	Tier 2a Protective gloves	Systemic via dermal route Systemic via inhalation route Local inhalation concentration	0.0078 mg/kg bw/day 	155	155
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG, 2002)	Tier 2a Protective gloves Tier 2b	Systemic via dermal route Systemic via inhalation route Local inhalation concentration Systemic via	0.0078 mg/kg bw/day 0.0005	155	155 <u>10</u>
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG, 2002)	Tier 2a Protective gloves Tier 2b (protective	Systemic via dermal route Systemic via inhalation route Local inhalation concentration Systemic via dermal route	0.0078 mg/kg bw/day 0.0005 mg/kg bw/day	155	155 <u>10</u>
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG, 2002) Assuming 1% dermal	Tier 2a Protective gloves Tier 2b (protective gloves, single	Systemic via dermal route Systemic via inhalation route Local inhalation concentration Systemic via dermal route	0.0078 mg/kg bw/day 0.0005 mg/kg bw/day	155	155 <u>10</u>
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG, 2002) Assuming 1% dermal absorption	Tier 2a Protective gloves Tier 2b (protective gloves, single coverall (4 %	Systemic via dermal route Systemic via inhalation route Local inhalation concentration Systemic via dermal route	0.0078 mg/kg bw/day 0.0005 mg/kg bw/day	155	155 <u>10</u>
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG, 2002) Assuming 1% dermal absorption	Tier 2a Protective gloves Tier 2b (protective gloves, single coverall (4 % penetration)	Systemic via dermal route Systemic via inhalation route Local inhalation concentration Systemic via dermal route	0.0078 mg/kg bw/day 0.0005 mg/kg bw/day 	155	155 <u>10</u>
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG, 2002) Assuming 1% dermal absorption	Tier 2a Protective gloves Tier 2b (protective gloves, single coverall (4 % penetration)	Systemic via dermal route Systemic via inhalation route Local inhalation concentration Systemic via dermal route Systemic via inhalation route	0.0078 mg/kg bw/day 0.0005 mg/kg bw/day 	155	155 <u>10</u>
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG, 2002) Assuming 1% dermal absorption	Tier 2a Protective gloves Tier 2b (protective gloves, single coverall (4 % penetration)	Systemic via dermal route Systemic via inhalation route Local inhalation concentration Systemic via dermal route Systemic via inhalation route	0.0078 mg/kg bw/day 0.0005 mg/kg bw/day 	155	155 <u>10</u>
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG, 2002) Assuming 1% dermal absorption	Tier 2a Protective gloves Tier 2b (protective gloves, single coverall (4 % penetration)	Systemic via dermal route Systemic via inhalation route Local inhalation concentration Systemic via dermal route Systemic via inhalation route	0.0078 mg/kg bw/day 0.0005 mg/kg bw/day 	155	155 <u>10</u>
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG, 2002) Assuming 1% dermal absorption	Tier 2a Protective gloves Tier 2b (protective gloves, single coverall (4 % penetration)	Systemic via dermal route Systemic via inhalation route Local inhalation concentration Systemic via dermal route Systemic via inhalation route	0.0078 mg/kg bw/day 0.0005 mg/kg bw/day 	155	155 <u>10</u>
Net deployment Risk assessment according to Model 2 – Professionals: installing fish cages (TNsG, 2002) Assuming 1% dermal absorption	Tier 2a Protective gloves Tier 2b (protective gloves, single coverall (4 % penetration)	Systemic via dermal route Systemic via inhalation route Local inhalation concentration Systemic via dermal route Systemic via inhalation route Local inhalation concentration	0.0078 mg/kg bw/day 0.0005 mg/kg bw/day 	155	155 <u>10</u>

Products for antifouling paint. With none of the four products - (

(— — is the exposure acceptable from spray application but the risk for painting with brush and roller is acceptable for all four products when relevant protective equipment is used. However, a risk is identified for removal of these paints based on the current data and calculations.

When RMS evaluated the dummy product, containing 4% copper pyrithione, the assumption was that the dermal absorption was 0.5 or 1 %. When 0.5 % dermal absorption was assumed,

the brush and roller scenario gave acceptable risks if relevant protection equipment was used but there was a risk for removal of the paint. The exposure during spray application exceeded the AELs but to a small extent (109 %), so with a lower percentage of copper pyrithione in the product it would probably be no risk for spray application. It should be noted that RMS has followed the HEEG recommendations. In some scenarios the use of the 75th percentile was recommended. However, as only the 90th percentile values were available to RMS these values have been used which is a conservative way of doing the calculation. Moreover, HEEG recommended that values from different studies should be pooled before the values were used. This has not been done in this report due to lack of time. When the products are evaluated at the product authorisation stage the outcome might therefore be different and more products and scenarios might be acceptable.

The ancillary worker work together with the sprayer and as the spraying scenario was found to be unacceptable the ancillary worker scenario has not been included in this table. However the calculations can be found in the Documents II BC for the different products. There would not be any risk for the ancillary worker as long as the paint spraying scenario is without risk and the ancillary worker wears the same type of protection as the paint sprayer.

Duration and frequency of the tasks performed by the potman are directly correlated to the tasks done by the sprayer. However the potman will get a higher dermal exposure than the sprayer.

It can be assumed that the grit filler get the same exposure as the sand blasting person if he uses the same type of PPE and thereby the grit filler scenario is covered by the sand blasting scenario.

Dummy product 2% for net coating

The two scenarios; net coating and deployment of the treated nets gave acceptable risk if relevant protection equipment was used and provided that the dermal absorption for the product does not exceed 1%.

2.2.2.3 Exposure of non-professionals

Table 2.2.2.3 The potential exposure to non-professional users

For a scenario to be accepted the total systemic exposure has to be $\leq 100\%$ of dermal and inhalation AELs and also $\leq 100\%$ of the local inhalation AEL. The values in the acceptable scenarios have been underlined.

Arch, Dummy product 4 %							
Exposure Scenar	rio	Exposure route	Estimated exposure	Exposure % of AEL	Total systemic exposure % of dermal and inhalation AELs		
	Tier 1 no PPE	Systemic via dermal route	0.0644 mg/kg bw/day	1288	1291		

Painter using		Systemic via	0.0000625	3	
brush and			mg/kg bw/day	10	
roller Dick assessment			0.002	10	
according to	Tion 20	Sustamia via	0.0552	1102	1107
Links et at	long closved	Systemic via	0.0352	1103	110/
2007	chirt and	dermai route	mg/kg Uw/day		
2007.	trougers or skirt				
Assuming 1%	and shoes	Systemic via	0.0000625	3	
dermal	and shoes	inhalation route	mg/kg bw/dav		
absorption					
absol prion					
		Local inhalation	0.002	10	
		concentration	mg/m ³		
		~			
	Tier 2b	Systemic via	0.0203	406	409
	long-sleeved	dermal route	mg/kg bw/day		
	shirt and				
	trousers or skirt	Systemic via	0.0000625	3	
	and shoes and	inhalation route	mg/kg hw/day	5	
	rudimentary/	initial attorn route	mg/kg 0 w/ddy		
	gloves				
	gioves	Local inhalation	0.002	10	
		concentration	mg/m ³		
Painter using	Tier 1	Systemic via	0.0322	644	647
brush and	no PPE	dermal route	mg/kg bw/day	011	017
roller					
Risk assessment					
according to		Systemic via	0.0000625	3	
Links et at,		inhalation route	mg/kg bw/day		
2007.					
Assuming		Local inhalation	0.002	10	
0.5% dermal		concentration	mg/m ³		
absorption					
	Tier 2a	Systemic via	0.0276	552	555
	long-sleeved	dermal route	mg/kg bw/dav		
	shirt and				
	trousers or skirt				
	and shoes	Systemic via	0.0000625	3	
		inhalation route	mg/kg bw/day		
		Local inhalation concentration	0.002 mg/m ³	10	
--	---	-----------------------------------	----------------------------	-----------	------------
	Tier 2b long-sleeved shirt and trousers or skirt and shoes and rudimentary/ household	Systemic via dermal route	0.0,0102 mg/kg bw/day	203	<u>206</u>
		Systemic via inhalation route	0.0000625 mg/kg bw/day	3	
	gioves	Local inhalation concentration	0.002 mg/m ³	<u>10</u>	
Removal paint Risk assessment	Tier 1 No PPE	Systemic via dermal route	Not expected		<u>94</u>
according to "HEEG		Systemic via inhalation route	0.001875 mg/kg bw/day	94	
Opinion on the paper by Links et al. 2007 on occupational exposure during application and removal of antifouling paints" that was endorsed at TM IV 2012		Local inhalation concentration	Not expected		

Exposure Scenar	rio	Exposure route Estimated exposure		Exposure % of AEL	Total systemic exposure % of dermal and inhalation AELs			
Painter using	Tier 1	Systemic via	0.0387	774	778			
brush and	no PPE	dermal route	mg/kg bw/day					
roller		Systemic via	0.0000627	3				
Risk assessment		inhalation route	mg/kg bw/day					
according to		Local inhalation concentration	0.002 mg/m ³	10				

|--|

Links et at, 2007.	Tier 2a long-sleeved shirt and	Systemic via dermal route	0.0332 mg/kg bw/day	664	667
Accuming 10/	transers or skirt				
Assuming 170		Sustamia via	0.0000627	2	
dermal	and shoes	Systemic via	0.0000027	5	
absorption		inhalation route	mg/kg bw/day		
		Local inhalation	0.002	10	
			0.002	10	
		concentration	mg/m ³		
	Tier 2b	Systemic via	0.0122	244	247
	long-sleeved	dermal route	mg/kg bw/day		
	shirt and				
	trousers or skirt				
	and shoes and	Systemic via	0.0000627	3	
	rudimentary/	inhalation route	mg/kg bw/dav		
	h ann a h a h d		8,8,		
	nousenoid				
	gloves	Local inhalation	0.002	10	
		concentration	mg/m^3		
		concentration	iiig/iii		
Removal paint	Tier 1	Systemic via	Not expected		<u>95</u>
Risk assessment	No PPE	dermal route			
according to		Systemic via	0.00189375	95	
"HEEG		inhalation route	mg/kg bw/day		
Opinion on the		Local inhalation	Not expected		
paper by Links		concentration			
et al. 2007 on					
occupational					
exposure during					
application and					
removal of					
antifouling					
paints" that was					
endorsed at TM					
IV 2012					

The applicant foresees a use of **betaching** by non-professionals using the product on private leisure craft. Due to the product's classification as corrosive to eyes (Xi; R41) and sensitising (Xi; R43) the product cannot in principle be authorized for non-professional use since this group of users is assumed to have no means of protection from exposure in the form of protective clothing or equipment (TNsG on Annex I inclusion, 3.1.1, p 19). However, as risk assessments indicate that most antifoulant substances will cause too high risk for use by amateurs (with no PPE) and we need to have some antifouling paints for amateur use, it has

Copper pyrithione	Product type 21	7th BPR Meeting Sept 2014

been decided to generally make an exception for antifouling substances and allow the use of products containing this type of substance if the products are sold with suitable gloves that decrease the risk to an acceptable level. When amateurs use gloves, the risk for sensitization can also be ignored, at least when the substance isn't volatile. However, both **and the dummy product containing 4% copper pyrithione caused a risk by exceeding the acceptable exposure (short term dermal AEL0 0.005 mg/kg bw/day) during application with brush and roller, even when light clothing with 50 % penetration and household gloves were used and therefore these products do not fulfil the conditions for authorisation even according to the exceptional conditions agreed between CAs.**

2.2.2.4 Incidental exposure of non-professionals/bystanders

Secondary exposure to antifouling products, used by professional workers, is expected to occur to bystanders if individuals working in the dock yard were to pass by or stop to watch a spraying or blasting operation. However these bystanders are also expected to be professional workers and can therefore be expected to have some protecting clothes. It was decided at TM III 2011 that no quantitative risk assessment should be performed for this group but that the product should be labelled with the phrases "unprotected persons be kept out of treatment areas".

4.01 % copper pyrithione and 0.6 % dermal absorption									
Exposure Scena	rio	Exposure	Estimated	Exposure					
		route	exposure	% of ARfD					
Toddler	Tier 1	Systemic via 0.0254127 508 % of shore		508 % of short-					
touching wet		dermal route	mg/kg bw/day	term dermal					
paint on a boat				AEL (0.005					
				mg/kg bw/day)					
		Systemic via	Negligible						
		inhalation route							
Toddler		Systemic via	0.423545	2112 % of					
touching wet		oral rout		ARfD (0.02					
paint on a boat				mg/kg bw/day)					
and then hand									
-to-mouth									
contact									
	1	•	r						
Toddler	Tier 1	Systemic via	0.00060994	12.2 % of					
touching dry		dermal rout		short-term					
paint				dermal AEL					
				(0.005 mg/kg					
				bw/day)					

Table 2.2.2.4 The potential exposure to children touching wet or dry paint For the exposure to be acceptable the values has to be $\leq 100\%$ of ARfD or \leq dermal short-term AEL

		Systemic via	Negligible		
	I	minutation foute	I	I	
Toddler	Tier I	Systemic via	0.05524778	276 % of	
touching dry		oral route		ARfD (0.02	
paint on a boat				mg/kg bw/day)	
And then hand	Tier 2	Systemic via	0.0014375	7.2 % of ARfD	
-to-mouth	Refinement	oral route	mg/kg bw/day	(0.02 mg/kg	
contact	based on			bw/day	
	leaching rate of				
	copper				
	pyrithione				

When **Sector** containing 4.01 % copper pyrithione is used by non-professionals there is a risk that small children touch the newly treated and still wet area on the boat or touch the dry paint and after that lick their hands. The risk assessment of toddlers touching wet paint with subsequent hand-to-mouth transfer indicated high risks and children must therefore not be allowed to touch the wet paint. Touching dry paint was found to be without risk. The Dummy product 4 % was also intended for non-professional use and at the product authorisation step a calculation has to be done with the dermal absorption and the copper pyrithione concentration for the specific product.

Bystanders are not supposed to come in contact with the nets used for aquaculture. The use of copper pyrithione treated nets may result in exposure of copper pyrithione to fish and shellfish. RMS has done a rough calculation showing that the possible exposure from eating fish or oysters is well below the ADI for copper pyrithione.

2.2.3 Environmental Risk Assessment

For the environment, we present a risk assessment for antifouling products which release copper pyrithione and which in turn gives rise to the relevant metabolite 2-pyridinesulfonic acid (PSA). Both copper pyrithione and PSA are risk assessed, but not the copper ion. Today, most antifouling paints on the market are based on copper ion as the major active substance, and an evaluation of this ion is certainly needed for a product authorisation. For copper ion we refer to ongoing EU work in the CAR for copper ion as biocide PT 8 and 21.

2.2.3.1 Fate and distribution in the environment

In water solutions, copper- and zinc pyrithione has the potential to appear as many different species of metal chelates with the pyrithione (Figure 2.2.3-1). This type of chemical speciation between ionic and neutral entities is not unique to pyrithiones (TGD, part II, Appendix XI), but has previously been studied for other organometal compounds, for instance tributyltin in which case it turned out that the understanding of fundamental properties such as the octanol–water partition coefficient (Kow), and the particle–water distribution coefficient (Kd) was greatly improved by accounting for properties of the specific species present in the water.

The species pattern is a function of the concentrations of chelating metal ions (mainly from the transition metals copper, zinc, iron, manganese etc), the total concentration pyrithione, and the formation constant for the species. In natural waters where the total pyrithione concentration is much lower than the chelating metal ions, the species pattern is thereby potentially influenced by the background concentration of the chelating metals, and pH.

Theoretical calculations of the speciation pattern have been done by use of the software CHEAQS PRO (CAR CPT PT 21, API, Doc III A7.1.1.2.4/Kramer KJM, 2008). Free pyrithione (PT⁻) was predicted to be the dominating species under essentially all scenarios representable to realistic conditions in the environment. The copper pyrithione complexes (CuPT₂, CuPT⁺) were only significant under extreme conditions, for instance when the concentration of total Cu was above 6.4 mg/l and total pyrithione was above 7.9 μ g/l, which probably represent conditions very close to a boat hull painted with copper- and pyrithione-containing antifouling paint, or even on/in the paint. There are, however, indications from the open research literature, that more ions than free pyrithione exist in significant amounts in marine water solutions even at low concentrations. This statement is based on results from experiments with pyrithione salts, where researchers were able to detect the intact CuPT₂ complex using LC-MS.

Figure 2.2.3-1. Speciation of pyrithione in aqueous solution. The tautomers of free pyrithione indicate it is has acid–base properties. Illustration and pK_a adopted from Doose (2003). Specific metabolites formed under aerobic and anaerobically conditions are not shown here.

Fate and distribution of zinc pyrithione, copper pyrithione, and sodium pyrithione is expected to be influenced by the properties of all pyrithione species which are formed in the environment. And since this species pattern is a function of the environmental conditions, it is

expected that all three pyrithione salts, when diluted, behave almost identically. The interpretation of all fate studies supports this expectation. For instance, in soil and sediment studies, the sorption strength (K_{OC}) was pH-dependent in similar ways for all three salts.

When testing the pyrithiones in various Ready biodegradability tests, copper pyrithione (OECD 301 B and C) and zinc pyrithione (OECD 301 B) were not readily biodegradable. This is due to the fact that suspensions of solid substances were tested, and the soluble (degradable) concentrations were too low to generate the requested amount of inorganic carbon within the time limits. The salts simply dissolve to slow. When sodium pyrithione which has much higher water solubility was tested (OECD 301 B) in comparable concentrations, but administered in the form of a solution, the test result was "readily biodegradable". Hence, we consider the pyrithione moiety as readily biodegradable. The relevant metabolite, 2-pyridine sulphonic acid (PSA), was also "readily biodegradable" in the tests. The test result that a substance is ready degradable does not mean that it is totally non-persistent. The degradation rate is still a finite value, perhaps corresponding to 15–150 d half-life in water as the TGD propose. Accumulation of PSA in significant amounts in all fate studies supports this.

Aerobic and anaerobic aquatic degradation studies using marine water and sediment and microcosm studies in both saltwater and freshwater systems gave further information. The conditions under which these studies were conducted simulate the environmental conditions and concentrations relating to the release of pyrithione from various types of use. Biodegradation was also assessed in a seawater die-away study with radiolabelled copper pyrithione at a low concentration. Anaerobic degradation rate is higher than the aerobic degradation rate, but overall pyrithione degrades fast in water and sediment, and the most stable metabolite is PSA. In some studies bound residues constituted 60–68% of the deposited dose in sediment, but never exceeded 70% of the added dose to the system, which would have triggered further studies (98/8/EC, Annex VI, §85). The CO₂ formation was typically below 0.9% in simulation tests with pyrithiones.

Other metabolites are formed, but these are more short-lived, and all lead to the formation of PSA. It seems reasonable to assume that the metabolites from pyrithione are ready biodegradable, and therefore pyrithiones should not be considered to be persistent (P) in a PBT assessment. Very rough 'two-point estimates' of the persistence of one such metabolite, (omadine disulfide, OMDS), can possibly be made from ecotoxicity tests where it was added as a single solute dose to the water. Such estimates indicate a single-first order dissipation half-life of 9–53 hours (0.4–2.2 days) in various aquatic ecotoxicity test systems (fish, invertebrates). The metal ion of copper pyrithione (or of zinc pyrithione and sodium pyrithione) is obviously persistent. Please refer to the CAR for copper as biocide PT 8 and 21. A typical PT 21 paint contains a higher percent copper ion than pyrithione (which is only added in low amounts as a booster biocide).

In the MAMPEC model there is no input for degradation activity of the active substance inside (sorbed to) suspended matter. It is, however, the case that PEC suspended matter is calculated from a partitioning coefficient multiplied by PEC water, so any degradation activity (rate) used for the water column will have influence on PEC suspended matter. It is also the case that the current data set for pyrithiones (and most likely for any other chemicals) do not contain specific studies on degradation rate for the fraction biocide sorbed to suspended matter, other than that such a rate is already included (via the water column degradation activity). It can also be said that there are no guidelines to our knowledge that could be used to produce better data, in essence data that distinguish degradation activity of an active substance sorbed to suspended matter from degradation activity in the bulk water column.

In addition, a study on zinc pyrithione conducted according to the guideline OECD 303A (simulation test – activated sludge units) at a concentration of 4 μ g/l in the influent also provides information on degradation. The results show that pyrithione was highly removed from the effluent water (approximately 98% removed compared to inflow) during biological wastewater treatment. Approximately 81% was shown to degrade (into CO₂, metabolites or bound residues). Based upon the levels of ¹⁴CO₂ production (39.2±5.8%) biodegradation appeared to be the major mechanism of removal.

Copper-, zinc and sodium pyrithione are hydrolytically stable in experiments with high concentrations. However, the rate is detectable but still slow in experiments with lower concentration. No clear conclusions on pH dependency was drawn since rates both increase and decrease with pH, in studies which appear to be comparable.

Pyrithione had considerable light absorptivity in the range of 290–400 nm, where photoactive solar radiation is available. Photolysis rate is faster at lower concentrations. Photolysis is very rapid in the laboratory, and probably also in the field, again leading to the final somewhat persistent degradant PSA. The quantum yield (Φ^c_E) for different pyrithione salts at 0.1–1.0 µg/l varied between 0.10 and 0.24.

Pyrithione is not expected to volatilise from waters or soils to any significant extent. Calculations according to the Atkinson calculation method indicate a half-life of 26–160 h of pyrithione in the atmosphere. The rates are based on the assumption of OH radical concentration in the TGD. The rates would be 3 times higher if based on the OH radical concentration which is given in the software used by the applicants $(1.5 \times 10^6 \text{ (radicals)/ml})$.

In the key study on adsorption K_{OC} for ¹⁴C-pyrithione ranged from 780 to 11,000 l/kg_{OC} (log K_{OC} of 2.9–4.0) (values at 1 mg/l), and typically increased with decreasing concentration (Freundlich n < 1), and the sorption data fitted reasonably well to the Freundlich isotherm, within the studied concentrations (0.5–4 mg/l). The adsorption and desorption log K_{OC} varied strongly with soil or sediment pH.

2.2.3.2 Effects assessment

Please refer to effects data in the tables of the LoEP.

Pyrithione

Effects were studied in both fresh- and marine organisms, and no clear difference could be seen in sensitivity, judged from a look at the summary tables in Doc II A. There was typically

a high variability in the effect data, and much of this is explained by the degree of degradation of the test substance, where the fresh active substance is the most toxic. An illustration of this was given from the 7-days tests with *Lemna gibba* where the EC50 values increased roughly by a factor of 10 when comparing three tests where the test solution was replaced, respectively: 7 times per day (lowest EC50), once a day (intermediate EC50), and a static experiment (highest EC50).

The key study for acute toxicity to fish was done with *Pimephalis promelas* and gave a LC_{50} mortality of 2.6 μ g/l (TWA). The study set up was flow through, and used dechlorinated tap water.

The key study for acute toxicity to invertebrates was done with *Mysidopsis bahia*, and gave a 96-h LC₅₀ mortality of 1.6 μ g/l (TWA). The study set up was flow through (6.3 replacements per 24 h) and natural sea water diluted with tap water.

The key study for acute and chronic toxicity to algae was carried out with *Skeletonema costatum*, and a geometric mean of TWAs for NOECs from four *Skeletonema* studies was considered most relevant (0.176 μ g/l). The study set up was static for all *Skeletonema* tests.

The **acute toxicity** tests gives EC/LC₅₀ values for invertebrates and fish are within one order of magnitude (1.6–2.6 μ g/l). Furthermore, the dose–response is typically steep, with NOEC values within a factor of two from the EC/LC₅₀ value. The **long-term toxicity** was assessed from the multi generation algae test, which resulted in a NOEC of 0.176 μ g/l (geomean of TWA from four studies). This NOEC was selected as the key endpoint for the risk assessment of aquatic pelagic organisms.

For assessment of risk to aquatic benthic organisms, the 10-days EC50 for the sediment dweller (*Hyalella azteca*) was 1.9 mg/kg ww sediment (8.5 mg/kg dw) (geomean of EC50 day 0 and day 10), and similar ECs were observed in two more sediment dweller tests.

Acute EC_{50} values were only a factor of 2 higher than the chronic LOEC for fish. This was seen both in studies from one applicant (which studied *Pimephales promelas*), and in studies with *Fundulus heteraclitus* from a (open literature. For invertebrates, the acute LC_{50} for the sea urchin *Arbacia punctulata* was very close to the chronic LOEC for the marine copepod *Acartia tonsa*. That acute and chronic effect concentrations are closely positioned can be concluded also from comparison of a single invertebrate species, since the applicants' studies with *Daphnia magna* gave a chronic LOEC of 4.9 µg/l, and an acute EC₅₀ value of 22 µg/l (and acute NOEC 7.9 µg/l).

The effect of different pyrithione salts on aerobic biological sewage treatment processes was assessed in six studies, by determining inhibition of respiration of the **microorganisms** present in activated sludge following 30 minutes. The lowest EC_{50} observed was >0.32 mg/l, and the lowest NOEC was 0.032 mg/l. In a seventh study, exposure for 16 hours with pyrithione to the bacteria *Pseudomonas putida* gave an EC_{50} value of 0.22 mg/l and a NOEC of 0.063 mg/l, in essence values that are similar to the activated sludge tests.

Pyrithione tested for **terrestrial toxicity** on earthworms gave a 14-d NOEC mortality of 400 mg/kg dw (nominal). For plants, a seedling emergence test gave a NOEC of 100 mg/kg dw soil (nominal concentration), and EC₅₀ was 280 mg/kg dw (nominal). The same NOEC value was also observed in for mortality of the soil dweller Collembola (*Folsomia candida*). A time-weighted average NOEC was estimated to 8.7 mg/kg dw soil (based on a subjectively selected 16 days averaging period and dissipation rate of 0.717 d⁻¹). The choice of time window for the TWA factor was based on considerations of that pyrithione has shown rapid effects in most ecotoxicity studies. Using a longer time would overestimate toxicity. In fact, the TWA factor approaches zero for longer values of time, and that is not reasonable.

For the bird Northern Bobwhite (*Colinus virginanus*) the 14-days LD₅₀ was 60 mg/kg body weight, NOEC was 31.2 mg/kg body weight. The 8 days LC₅₀ was 1110 mg/kg food, and no lethality (LC₀) was 492 mg/kg food. Effects on birds comprised signs of toxicity and abnormal behaviour which included: reduced reaction to external stimuli (sound and movement in reaction to the observer); ruffled appearance; lethargy; wing droop; loss of coordination; depression; prostrate posture; loss of righting reflex; reduced reaction; shallow and rapid respiration; and lower limb weakness. Similar effects as these are also seen for rats, and possibly also in fish where inflammatory masses in lateral fish muscle were observed.

PNECs were not derived for the **air compartment**, but reference data for inhalation toxicity to humans are available from the toxicological section. The physicochemical properties of pyrithione, and the expected emission routes from biocidal use, do not suggest that this substance will pose a risk to the atmosphere.

A very high BCF value which was observed in one of the API studies may be due to sorption of pyrithione (and/or bound residues or even inadvertently formed pyrithione disulfide) to fish food which according to BCF guidelines shall be removed within 30 minutes (which it probably was not).

A typical value for BCF in fish is 7.7 l/kg ww or log BCF = 0.88 log (l/kg ww). For BCF in invertebrates the typevalue is 8.0 l/kg ww or log BCF = 0.91 log (l/kg ww). These typevalues are one to two orders of magnitude lower than log BCF = 3.0, above which bioconcentration is generally considered to be of concern. It is also acceptable judged by the criteria of BCF > 2000 in the TNsG on Annex I inclusion into directive 98/8/EC.

The low BCF, combined with the relatively rapid degradation of pyrithione in natural aquatic systems (leading to lower exposure), and in vertebrates tested in the human toxicology data set indicates that the inherent properties of pyrithione makes it unlikely to reach high concentrations in aquatic species, either directly or through the food webs (**secondary poisoning**). This is further supported by the fact that in monitoring studies, so far it has not been possible to detect pyrithione in aquatic biota, in spite of the long historical use of pyrithiones.

For the derivation of PNECs, the assessment factor of 10 was used for aquatic pelagic organisms. This is motivated since long term chronic NOECs from 3 different trophic groups (fish, crustaceans, algae) are available, and short-term toxicity from additional species

(echinodermates, bivalve, tunicate) representing marine taxonomic groups does not indicate higher sensitivity:

PNEC marine = geomean of ^{TWA}NOEC (*Skeletonema*) / AF = $(176 \mu g/l) / 10 = 17.6 ng/l$.

For PNEC sediment a factor 1000 for benthic aquatic organisms (2 short term EC50s are available; three tests, but two are on the same species). The PNECsediment derived from tests with sediment living organisms, was a factor of 2 lower than that derived from the EPM (3.84 μ g/kg ww) so in accordance with MOTA (version 6, appendix on PT 21, point 5.2) the test is used. Hence:

PNEC sediment = 1.9 mg/kg dw / 1000 = 1.9 μg/kg ww PNEC sediment = 8.5 mg/kg dw / 1000 = 8.5 μg/kg dw.

For PNEC microorganisms, a factor 10 for microorganisms (motivation: NOEC values exists for OECD 209 test on respiration inhibition of STP organisms):

PNEC stp= $(0.032 \text{ mg/l wet sludge}) / 10 = 3.2 \mu g/l wet sludge.$

For PNEC soil, a factor of 50 for terrestrial organisms (2 long term NOECs are available):

Metabolites

For the metabolite PSA there are three acute LC_{50} for fish, *Pimephalis promelas*, *Cyprinodon variegates*, *Oncorhyncus mykiss*. The lowest LC_{50} was >46.9 mg/l (TWA). There are three acute LC_{50} for invertebrates, *Daphnia, Mysidopsis*, *Crassostrea*. The lowest LC_{50} was 71.6 mg/l (TWA) for *Mysidopsis*. There is one EC_{50} for acute/chronic freshwater algae *Selenastrum capricornutum* and this (120-h) EC_{50} was >32 mg/l, its NOEC was 5.46 mg/l (TWA). In this data set there are 4 taxonomic groups tested (fish, arthropods, bivalves, algae). To fulfil the TGD requirement, there should be 3 + 2 acute LC_{50} values from 5 taxonomic groups. Hence, there is one data point missing. But, in addition to the 4 taxonomic groups, there is the chronic fish NOEC which is only reported as >10 µg/l. An assessment factor of 1000 would generate a PNEC of 5.46 µg/l. This is below the NOEC from the chronic fish test (>10 µg/l). From this taken together it seems over conservative to use a higher assessment factor than 1000. The PNECmarine water for PSA is thereby 5.46 µg/l based on an assessment factor of 1000 and the algae NOEC (TWA).

PSAPNEC marin = $(5.46 \text{ mg/l}) / 1000 = 5.46 \mu \text{g/l}.$

For sediment, no tests with sediment organisms was available, so the equilibrium partitioning model was used to extrapolate toxitity from water to sediment

^{PSA}PNEC sediment = ^{EPM}PNEC sediment =

= (Ksediment_water / RHOsediment) × PNECwater × 1000

Copper pyrithione	Product type 21	7th BPR Meeting Sept 2014

= $(25.9 \text{ m}^3 \text{ w/m}^3 \text{ ww soil / } 1150 \text{ kg ww soil/m}^3 \text{ ww soil)} \times (5.46 \mu \text{g/l}) \times 100$ = $123 \mu \text{g/kg dw}$ (= 566 $\mu \text{g/kg dw}$).

For soil, no tests on soil living organisms was available, so the equilibrium partitioning model was used to extrapolate toxitity from water to soil.

 $PSAPNEC \text{ soil} = EPMPNEC = PNEC_soil$ $= (Ksoil_water / RHOsoil) \times PNECwater \times 1000$ $= (30.2 \text{ m}^3 \text{ w/m}^3 \text{ ww soil } / 1700 \text{ kg ww soil/m}^3 \text{ ww soil}) \times (5.46 \text{ µg/l}) \times 100$ = 97 µg/kg dw (= 110 µg/kg dw).

For sewage treatment plants, no tests were available, so the same PNEC as for pyrithione was assumed.

PSAPNEC stp = Pyrithione PNEC stp = 3.2 µg/l.

For the metabolite copper ion we refer to the CAR for copper as biocide PT 8. In the version (April 2008) the PNEC aquatic (fresh water) for copper ion (+II) is set to 2.68 μ g/l. This was increased to 7.8 μ g/l in the Assessment Report for copper carbonate by RMS France 2011.

The evidence regarding the safety of pyrithiones with regards to endocrine disruptive effects was reviewed with the following outcome:

Structural evidence for the active substances sodium pyrithione, zinc pyrithione and copper pyrithione and their environmental complexes and metabolites show no obvious similarities with those of known endocrine disrupting compounds for vertebrate sexual hormone systems – typical features of the latter such as alkyl/aryl backbones with terminal hydroxyl groups and secondary hydroxyl/keto groups are entirely absent in the pyrithiones.

Some effects that were seen in the 2-generation reproduction study in rats with copper pyrithione could however be endocrinal effects. These were 1) a substantial decrease (26% compared to control animals) in the relative uterus weight in the highest dosage group in F1-generation, and 2) a decreased relative thymus weight in F2-pups at the highest dosage level in both sexes (24% in males compared to control animals, 6% in females).

In developmental toxicity studies with zinc pyrithione some possible endocrine effects were seen like; increase of post-implantation loss and resorption as well as rare malformations (not depending on maternal toxicity) like cleft palate, microglossia, malformed testis and limb malformations.

Guidelines are under development from the EU Commission. Therefore we conclude that today, like for most chemicals, no firm conclusions can be drawn for the pyrithiones regarding risk to man or the environment through endocrine disruption.

I ODDOR DURITHIO	
Copper pyriumo	ne

The most widely agreed definition of endocrine disruptors (IPCS/WHO, 2002) requires that there is an at least plausible link between the endocrine mode of action and adverse effects in organisms and/or populations. No such plausible link has been established for copper pyrithione.

2.2.3.3 PBT assessment

Pyrithione does not meet the P-criteria. In ready tests, copper pyrithione and zinc pyrithione are not readily degradable, but sodium pyrithione is. The pyrithione moiety is therefore considered as readily degradable. And in simulation tests (more representative concentration of pyrithione salts in systems of water–soil, water–sediment) the pyrithione degrades to many metabolites which all transforms into the slightly more persistent metabolite PSA. Pyrithione salts fulfils the T-criteria since chronic NOECs are far under 10 μ g/l. Pyrithione did not exceeded the B-criteria, and is not B.

The metabolite PSA is ready degradable and therefore does not meet the P-criteria. Its lowest not NOEC is 5.46 mg/l, which is above the criteria 10 μ g/l, and therefore PSA is not T. Studies on bioaccumulation is missing, but based on Kow, and its degradability indications are it is not B.

Since other metabolites degrade in a pathway which eventually leads to formation of PSA, it seems reasonable to assume the other metabolites are not P.

Some metabolites may be very toxic, for instance the pyrithione disulfide (OMDS), which has a 120-h NOEC of 80 μ g/l (nominal) for algae, NOEC mortality for fish of 11 μ g/l (nominal), and 4 μ g/l (nominal) for an invertebrate, and therefore clearly meets the T-criteria (<10 μ g/l) even when based on nominal concentration. However, all ecotoxicity tests (algae, aquatic plants, fish, invertebrates) typically and without exceptions demonstrate that toxicity decline (higher NOEC, EC) when test solutions are left to degrade. Thereby illustrating that the more long-lived metabolites are less toxic than pyrithione.

The metal ion of copper pyrithione (or of zinc pyrithione and sodium pyrithione) is obviously persistent. Please refer to the CAR for copper as biocide PT 8 and 21. In addition to the load of metal ion from the metal pyrithione salt, a typical PT 21 paint contains a higher percent copper ion (as a primary active substance) than pyrithione (which is only added in low percents as booster biocides). However, as being a metal, this metabolite is exempted from the PBT-assessment, which only concerns, organic- and organometallic compounds (REACH, i.e. EC 253/2011).

2.2.3.4 Exposure assessment and risk characterisation

The risks for the environment are characterized by comparing the toxicity of the substance (PNEC) with the exposure estimates (PEC).

Regarding the product-specific scenarios for the biocidal uses of copper pyrithione, four real products ("from from "from were evaluated using methodologies

outlined in the emissions scenario document for PT 21 (OECD nr 13, ENV/JM/MONO(2005)8). These include calculations with the MAMPEC model (Marine Antifouling Model for PEC). Conclusions were drawn by comparing the exposure- and risk assessments to values which were derived for a dummy product:

Exposure was estimated due to use of a dummy product (antifouling paint with 4% copper pyrithione) with a theoretically estimated leach rate (the "CEPE mass balance method" which is the agreed method to use for active substance evaluation). Since the leaching rate is a crucial parameter for exposure assessment, and the agreed method for active substance evaluation is to use a theoretical leach rate (and hence no leaching rate studies were submitted), no attempt is made to assess the real products exposure and risks.

Acceptable risks due to its in-service life use were identified in OECD Commercial harbour (water, sediment 1 year, suspended matter), OECD Marina (water, sediment 1 year, suspended matter), and OECD Shipping lane (suspended matter). The active substance content is similar (4% or lower) in the products which are assessed (Appendix II). Thereby probably also the leaching rate is lower in the four real products. No unacceptable risks are therefore to be expected for the four real products, when differences in leaching rate were accounted for by the simplified assumption that leaching rate is only dependent on concentration in the paint.

Acceptable risks for surface water recipients (the OECD Commercial Harbour, the OECD Marina) and sediment therein, were also modelled for scenarios where emissions comes from construction/building, maintenance and repair, and removal of the PT21 paint. The scenario was for a dummy product paint with an assumed content of 4% copper pyrithione, and thereby the four real products, which have a maximum content of 4% or lower must also show acceptable risks (Table 2.2.3.4-2)4. The PEC-modelling approach used for this, builds on the assumption of instantaneous release of biocide from the particle into the water. This was thoroughly discussed at the TM-meetings, and many drawbacks were identified, for instance that accumulation of biocide-containing particles in bottom sediment is disregarded. However it was finally used as a harmonised approach for all antifoulants (MOTA version 6, PT 21 appendix point 1.4 and 5.3).

The handling of paint during maintenance and repair (Figure 2.2.3.4), as well as new building, however, lead to unacceptable risks for soil and groundwater on the sites where the boats are handled (Table 2.2.3.4-3 is for pyrithione⁵).

⁴ The PEC values in this table are for a fresh water recipient of an STP (dilution factor 10 in TGD). Emissions from a STP to seas would be even more diluted (dilution factor 100 in TGD) and so the conclusion of acceptable risk is valid also for marine scenario (OECD Commercial Harbour, OECD Marina, OECD Shipping Lane).

⁵ similar risks are illustrated for PSA, but is only shown in Doc II BC in order to keep Doc I short

Figure 2.2.3.4. Emission of paint particles onto soil during maintenance and repair. (Photo by Britta Eklund, Stockholm University).

Regarding risk for groundwater contamination, the pyrithione PEC values from different use of dummy products with an assumed content of 4% copper pyrithione indicate unacceptable risk (>0.1 μ g/l) in most scenarios. For the so called Worst-case scenarios, the PEC values were 1.9–52 μ g/l, and for the so called Typical-case scenarios, the PEC values were 2.0–10 μ g/l (fewer scenarios, hence more narrow range). Possible refinements were discussed at the biocide TM and CA-meetings for all antifoulants as a group, and specific conditions for uptake decisions using risk mitigation measures are what has been discussed so far (August 2013).

An e-consultation on the fish net scenario was initiated at TM III, 2011, and at present (2014) there is an ongoing discussion at the WG meetings of what a final harmonised scenario should be. There are also further questions under discussion such as fish health, residues in fish, emissions on land, leach data derivation. Our applicant's scenario is kept in this draft final CAR for documentation only and, due to that the ongoing discussions on harmonisation (in May 2014 the guidance document is on a 'to do list' in ECHA's WG ENV meeting), cannot be used for decisions on safe use for active substance approval.

For PEC air, see next chapter on cumulative PEC estimates.

		PEC	PNEC	RQ	PEC	PEC	PEC	PNEC	RQ	RQ	RQ	MAMPEC filenename
Leach rate 2.88 µg/cm2/day	Load to syste m	Marine water	Marine water	Marine water	Marine sed. 1 yr	Marine sed. 10 yr	Marine sed. susp	Marine sediment	Marine sed. 1 yr	Marine sed. 10 yr	Marine sed. susp	filename
Scenario	g/d	μg/ 1	μg/ l	-	µg∕g dw	µg/g dw	µg/g dw	µg/g dw	-	-	-	-
Copper pyrithione												
OECD Commercial Harbour	2870	2.6E-03	1.8E-02	1.5E-01	4.6E-05	3.5E-04	7.4E-04	8.5E-03	5.4E-03	4.1E-02	8.6E-02	CPT_2.88_CoHa _T1_W.txt
OECD Marina (246 boats)	220	2.4E-03	1.8E-02	1.3E-01	1.3E-04	5.9E-04	6.7E-04	8.5E-03	1.5E-02	7.0E-02	7.9E-02	CPT_2.88_Mari _T1_W.txt
OECD Shipping Lane	890	8.1E-05	1.8E-02	4.6E-03	2.9E-07	2.9E-06	4.8E-05	8.5E-03	3.4E-05	3.4E-04	5.7E-03	CPT_2.88_ShLa _T1_W_F3.txt
Metabolite PSA												
OECD Commercial Harbour	2870	2.6E-03	5.5E+00	4.7E-04	2.5E-05	7.2E-05	7.3E-05	5.7E-01	4.5E-05	1.3E-04	1.3E-04	PSA_2.88_CoHa _T1_W.txt
OECD Marina (246 boats)	220	2.4E-03	5.5E+00	4.3E-04	1.3E-05	6.0E-05	6.8E-05	5.7E-01	2.3E-05	1.0E-04	1.2E-04	PSA_2.88_Mari _T1_W.txt
OECD Shipping Lane	890	8.1E-05	5.5E+00	1.5E-05	3.0E-08	2.9E-07	4.9E-06	5.7E-01	5.2E-08	5.0E-07	8.5E-06	PSA_2.88_ShLa _T1_W_F3.txt

 Table 2.2.3.4-1. July 2013: Environmental risk assessment of in-service life for biocidal products with copper pyrithione.

Copper pyrithione

Product type 21 7

Table# in ESD PT21	Pyrith. Clocal _{water} (mg/l)	Pyrith. Clocal _{sed} (µg/kg ww)	PSA Clocal _{water} (mg/l)	PSA Clocal _{sed} (µg/kg ww)	Pyrith. RQ water	Pyrith. RQ bottom sedim.	PSA RQ water	PSA RQ sedim.
Table number in this appendix	3.3.7-5	3.3.7-5	3.3.7-7	3.3.7-7	-	-	-	-
4.5 "new build pleasure craft, professional"	5.5E-6 0.00**	5.5E-3 0.00**	3.0E-8 0.00**	2.4E-1 0.00**	0.31 0.00**	2.9E-3 0.00**	5.4E-03 0.00**	1.9E-04 0.00**
4.47 "removal, pleasure craft, professional"	3.0E-9 7.5E-10	3.0E-3 7.5E-4	1.6E-8 4.0E-9	1.3E-2 3.2E-3	0.17 0.04	1.6E-3 3.9E-4	3.0E-03 7.4E-04	1.1E-04 2.6E-05
4.10 "application pleasure craft, professional"	4.5E-9 1.9E-9	4.5E-3 1.9E-3	2.4E-8 1.0E-8	1.9E-2 8.1E-3	0.26 0.11	2.4E-3 9.9E-4	4.4E-04 1.9E-03	1.6E-04 6.6E-05
4.49 "removal, pleasure craft, non- professional"	5.8E-9 4.6E-9	5.8E-3 4.6E-3	3.1E-8 2.5E-8	2.5E-2 2.0E-2	0.33 0.16	3.1E-3 2.4E-3	5.7E-03 4.5E-03	2.0E-04 1.6E-04
4.12 "application, pleasure craft, non- professional"	2.1E-10 2.1E-10	2.1E-4 2.1E-4	1.1E-09 1.1E-09	8.9E-4 8.9E-4	0.01 0.01	1.1E-4 1.1E-4	2.0E-04 2.0E-04	7.3E-06 7.3E-06

Table 2.2.3.4-2 Risk quotients (RQ = PEC/PNEC) for freshwater recipients (STP recipients) due to emissions vis STP originating from new building, maintence and repair of paints with 4% a.s. Worst- and typical case for each scenario.

** background of 0 is assumed

-			
CO	nner	nvrif	hione
~~	pper.	P . J L L L	

Product type 21

Table 2.2.3.4-3. Pyrithione. Risk ratios (PEC/PNEC) for soil on ship- and boatyards due to contamination via leaching of biocide from paint particles of a dummy product with 4% a.i.

Emission scenario, Table #*	% a.i.	Worst case Clocal _{soil} (mg/kg dw)***	Worst case PEC/PNEC	Typical case <i>C</i> local _{soil} (mg/kg dw)	Typical case PEC/PNEC
New build ship, commercial, Table 4.2	4	§	§	§	§
New build pleasure craft, professional, Table 4.5/4.6	4	0.87	5	§	§
M & R** (application) ship, professional, Table 4.7	4	§	§	§	§
M & R (removal) ship, professional, Table 4.44	4	§	§	§	§
M & R (application) pleasure craft, professional, Table 4.10/4.11	4	0.44	3	0,18	1.1****
M & R (removal) pleasure craft, professional, Table 4.47/4.48	4	0.30	2	0.074	0.4
M & R** (application) pleasure craft, non-professional, Table	4	0.033^	0.2	^	^
4.12					
M & R ^{**} (removal) pleasure craft, non-professional, Table 4.49/4.50	4	0.93	5	0.040	0.2

* Table numbers refer to numbers used in Appendix IIB3.3.1 "on ESD PT21 emissions etc".

** M & R is for maintenance and repair

§ no emission to soil according to default scenario in ESD for PT21.

^ESD does not distinguish worst- and typical case for this scenario.

**** 1.1 ~1 using rounding.

2.2.3.5 Cumulative use of pyrithione salts

The environmental assessment of cumulative use shall not be used as a basis for decision on Annex 1 inclusion of biocidal active substances into directive 98/8/EC (agreed at TM III, 2011). Nevertheless, it is left open for the initiative of individual MS to perform such an assessment.

The RMS considers that the information is needed for a proper interpretation of environmental data. For instance the lag phase of biodegradation in seawater is expected to be shorter if microorganisms are adapted to a background concentration of a biocide. In the CAR, an example of this is included. One seawater degradation study close to land had a short lag phase, while a study from open sea had a longer lag phase. Possibly this is consistent with a situation where cumulative emissions of pyrithione salts give higher background exposure close to land.

Furthermore, the outcome of a cumulative assessment can be used as a worst-case exposure, and serve as an argument for not requesting additional studies. In the CAR an example illustrates this. The exposure of soil due to sludge application on fields from cumulative assessment of all pyrithione sources gave acceptable risk to soil microorganims, based on a PNEC with a high assessment factor. It thereby didn't seem meaningful to request additional studies on soil microorganism for the dossier with only emissions from PT 21 use.

Due to the fact that the pyrithione salts (zinc pyrithione, sodium pyrithione and copper pyrithione) ionise and form similar species patterns in the environment, it was appropriate to also look at the cumulative exposure of pyrithione from all possible sources. These include non-biocidal use, which makes up a significant fraction, as exemplified with data from the Product register at the Swedish Chemicals Agency⁶ (where in 2008 a total of 28 tonnes pyrithione salts were used in Sweden, most of which is likely to be various biocidal use). In addition to these 28 tonnes, there are estimates of an additional 10 tonnes per year for the cosmetic use (uncertain value from NGO reports; Swedish authorities do not keep record on cosmetic use).

We expect that for the cumulative emission of pyrithione salts the largest emission routes are via municipal waste water into local recipients. By inserting measured concentration of pyrithione (1.7 μ g/l and 32 μ g/l), which were monitored in influent water to Swedish STPs, into appropriate TGD equations the following PECs could be calculated (Table 2.2.3.5):

- PEC in outflowing water of a TGD-scenario STP ("*Clocal_{eff}*", based on the fraction going to water (*Fstp*,_{water} = 0.02) measured in a OECD 304A STP-simulation study)
- PEC in the recipient surface water of the "TGD-STP" (based on the dilution factor 10 for the TGD standard recipient scenario)
- PEC for the TGD-STP recipient sediment (bottom sediment and suspended sediment has the same PEC in the TGD)
- PEC in sewage sludge of a TGD STP
- PEC in agricultural and grassland soils (TGD world).

⁶ this data from the Swedish product register is open to the public via <u>http://www.kemi.se/en/Start/Statistics/</u>

Monitored conc.	Input to STP* (mg/l)	Output from STP (mg/l)	PEC in receiving water (mg/l)	PNEC (mg/l)	PEC/PNEC surface water (STP)
	Clocal _{inf}	Clocal _{eff}	Clocal _{water}	PNEC aq (PNECstp)	
"1.7 μg/l"	1.7×10 ⁻³	3.4×10 ⁻⁵	3.4×10 ⁻⁶	1.76×10 ⁻⁵ (3.2×10 ⁻³)	0.19 (0.011)
"32 μg/l"	3.2×10 ⁻²	6.4×10 ⁻⁴	6.4×10 ⁻⁵	cc cc	3.6 (0.20)

 Table 2.2.3.5-1: PEC and PEC/PNEC for pyrithione in surface water and STP based on monitoring data as described in the text

* Monitoring data, see text.

Table 2.2.3.5-2: PEC and PEC/PNEC for pyrithione in fresh water sediment based on monitoring data as described in the text

Monitored conc.	Local PEC in freshwater sediment (mg/kg ww)	PNEC (mg/kg ww)	PEC/PNEC
"1.7 μg/ l "	3.4×10 ⁻⁶	0.0019	0.0018
"32 μg/l"	6.4×10 ⁻⁵	"	0.034

Table 2.2.3.5-3. PEC for pyrithione in sewage sludge and PEC/PNEC for soil based on monitoring data as described in the text

Measured environmental concentraion	Elocal _{water} *	Csludge	Csludge _{soil1} (0) agricultural, grassland	PNEC for soil	PEC/PNEC agricultural, grassland
		(mg/kg	(mg/kg dw)	(ma/ka dw)	č
		uwy		(Ing/kg uw)	
"1.7 μg/l"	3.40×10 ⁻³	13.4	2.2×10 ⁻²	0.17	1.3×10 ⁻¹
			8.9×10 ⁻¹	**	5.3×10 ⁻²
"32 μg/l"	6.40×10 ⁻²	252	4.2×10 ⁻¹	**	2.5×10 ⁻⁰
			1.7×10 ⁻¹	**	9.9×10 ⁻¹

Where it was relevant, PEC values were also compared to the measured data for recipient surface water and recipient bottom sediment. The PEC values are for fresh water STP-recipient scenarios (since the dilution factor 10 is assumed). The monitoring study did however cover fresh, brackish and marine recipients.

The cumulative PEC in fresh water STP recipient, indicates risk (PEC/PNEC ratio was up to 3.6 when inflow to STP was set to 32 μ g/l; Table 2.2.3.5-1). But in the monitoring study, all samples of recipient surface water showed concentrations below the LOD (15 ng/l), which in turn is lower than the PNEC, and therefore does not indicate risk (PEC/PNEC at highest 0.05).

Levels of pyrithione in biota are not reported from the open literature as far as RMS know, but attempts to generate monitoring data are reported. However, these samples gave no direct results regarding concentrations due to analytical difficulties.

Regarding agricultural- and grassland soils, which potentially can be contaminated via application of sewage sludge, the risk ratios due to cumulative pyrithione usage were above 1 in one scenario (Table 2.2.3.5-3) and indicate unacceptable risk if such sludge were to be used on agricultural soils.

A worst case local PECair above point source recipients is 0.43–14 pg per litre air. This PEC reflects cumulative exposure of all pyrithiones (sodium-, zinc, copper), and many sources of pyrithione, since it is based on monitored concentration in influent water to an STP. The PEC can be compared to the human 90-days NOAEC of 500 000 pg/l air. Hence, PEC/PNEC is 2.8×10^{-5} , which is far below the agreed level of protection (PEC/PNEC = 1), and thereby does not indicate risk for air breathing organisms.

2.2.4 Compliance with the environmental criteria for approval of active substance according to Annex VI of Directive 98/8/EC

Our assessment is that pyrithione is not a PBT substance. It is T, but not B or P. The metabolite PSA is neither P, nor B, nor T. The metabolite copper ion (+II) is clearly P. Regarding the assessment of B and T for copper ion, we refer to the CAR for copper as biocide PT 8 and 21. However, as being a metal, this metabolite is exempted from the PBT-assessment, which only concerns, organic- and organometallic compounds (REACH, i.e. EC 253/2011).

Exposure as estimated in established scenarios for biocidal use of pyrithione in PT 21 products gives acceptable risk to air breathing organisms.

Biocidal use of pyrithione in PT 21 products is not likely to cause high concentrations in aquatic species, either directly or through the food webs (secondary poisoning).

Exposure as estimated in established scenarios for biocidal use of pyrithione in PT 21 products gives acceptable risk to aquatic organisms in the adjacent surroundings to the recipient water⁷ and sediment to in-service life use of the paints (= leaching from boat hulls). (Table 2.2.3.4).

Using the ESD scenarios, risks due to leaching from paint flakes and dust at repair- and maintenance stations (land adjacent to marinas) gives acceptable risk to recipient water and sediment.

Risks due to leaching from paint flakes, paint scrapings and dust at repair- and maintenance stations (e.g. land at marinas) gives unacceptable risk to soil and groundwater. Regarding the unacceptable risk to soil-living organisms, these must be prevented by risk mitigation

^{7 &}quot;wider environment" as defined in MOTA version 6, appendix on PT21 ENV, point 1.7.

measures, in accordance with finalised discussions at the CA meeting March 2014⁽⁸⁾. Unacceptable risks for soils are seen for several antifouling products in the EU biocide evaluation programme. The CA-document handles both generic (for all antifoulants) and substance-specific measures. One example which is mentioned is that "labels and, where provided, safety data sheets of products authorised shall indicate that application, maintenance and repair activities shall be conducted within a contained area, on an impermeable hard standing with bunding or on soil covered with an impermeable material to prevent losses and minimize emissions to the environment, and that any losses or waste containing [the substance] shall be collected for reuse or disposal". We assume one such installation could be rinse boards (Figure 2.2.4).

Figure 2.2.4. The CA-meeting March 2014 requires harmonised risk mitigation measures for to minimise emissions to the environment. Biocide associated with paint particles are emitted at land-based boat washing areas. One possible way of achieving this is regulating that antifouling paint must only be handled on rinse boards (photo).

2.2.5 List of endpoints

In order to facilitate the work of granting or reviewing authorisations, the most important endpoints, as identified during the evaluation process, are listed in Appendix I.

⁸ CA-meeting document (CA-March14-Doc.4.2-Final .doc) Antifouling (PT21). Way forward for the management of active substances and the authorisation of biocidal products. Publicly available.

2.3 Overall conclusions

The outcome of the assessment for copper pyrithione in product-type 21 is specified in the BPC opinion following discussions at the 6th meeting of the Biocidal Products Committee (BPC). The BPC opinion is available from the ECHA website.

APPENDIX I: LIST OF ENDPOINTS

Chapter 1: Identity, Physical and Chemical Properties, Classification and Labelling

Active substance (ISO Common Name) Product-type

copper pyrithione (synonym not a ISO common name) PT 21

Identity

Chemical name (IUPAC)

Chemical name (CA)

CAS No

EC No

Other substance No.

Minimum purity of the active substance as manufactured (g/kg or g/l)

Identity of relevant impurities and additives (substances of concern) in the active substance as manufactured (g/kg)

Molecular formula

Molecular mass

Structural formula

bis(1-hydroxy-1H-pyridine-2-thionato-O,S)copper copper, bis[1-hydroxy-2-(1H)-pyridinethionato-O,S]-14915-37-8 238-984-0

None

950 g/kg

Technical copper pyrithione does not contain any impurities that are considered as relevant

 $C_{10}H_8N_2O_2S_2Cu$

Copper pyrithione 315.86 g/mol Metabolite PSA: 159.1

Physical and chemical properties

Boiling point (state purity)Not relevant as decomposition occurs upon meltingTemperature of decompositionDecomposition upon melting at 273–280°C (>98%–98.8%)Appearance (state purity)Green odourless powder (solid) (>98%–98.8%)Relative density (state purity)1.80–1.86 (96.8%–98.8%)Surface tensionNot applicable as the solubility in water is below 1 mg/lVapour pressure (in Pa, state temperature)<5 x 10 ⁻⁷ Pa at 25°C by direct measurement (98.8%)Henry's law constant (Pa m³ mol ⁻¹)3.48 x 10 ⁻¹³ Pa * mol/m³ (from extrapolated vapour pressure at 25°C and water solubility of 39 µg/l at 6.3–6.8)Solubility in water (g/l or mg/l, state temperature)49 µg/l at 10°C, 60 µg/l at 20 °C and 150µg/l at 30°C in non-buffered water at pH 5.9–7.1 (99%)In buffered solutions at 25°C (99%):pH 5: 55 µg/lPH 7: 102 µg/lpH 9: 109 µg/lThe differences in water solubility is not considered
Temperature of decompositionDecomposition upon melting at 273–280°C (>98%– 98.8%)Appearance (state purity)Green odourless powder (solid) (>98%–98.8%)Relative density (state purity)1.80–1.86 (96.8%–98.8%)Surface tensionNot applicable as the solubility in water is below 1 mg/lVapour pressure (in Pa, state temperature)<5 x 10 ⁻⁷ Pa at 25°C by direct measurement (98.8%)Henry's law constant (Pa m³ mol ⁻¹)3.48 x 10 ⁻¹³ Pa at 25°C by extrapolation from measurements in the range 190-210°C (>98%)Solubility in water (g/l or mg/l, state temperature)49 µg/l at 10°C, 60 µg/l at 20 °C and 150µg/l at 30°C in non-buffered water at pH 5.9–7.1 (99%)In buffered solutions at 25°C (99%): pH 5: 55 µg/l pH 7: 102 µg/l pH 9: 109 µg/lThe differences in water solubility is not considered
Appearance (state purity)Green odourless powder (solid) (>98%-98.8%)Relative density (state purity)1.80-1.86 (96.8%-98.8%)Surface tensionNot applicable as the solubility in water is below 1 mg/lVapour pressure (in Pa, state temperature)<5 x 10 ⁻⁷ Pa at 25°C by direct measurement (98.8%)4.3 x 10 ⁻¹⁷ Pa at 25 °C by extrapolation from measurements in the range 190-210°C (>98%)Henry's law constant (Pa m³ mol ⁻¹)3.48 x 10 ⁻¹³ Pa * mol/m³ (from extrapolated vapour pressure at 25°C and water solubility of 39 µg/l at 6.3- 6.8)Solubility in water (g/l or mg/l, state temperature)49 µg/l at 10°C, 60 µg/l at 20 °C and 150µg/l at 30°C in non-buffered water at pH 5.9-7.1 (99%)In buffered solutions at 25°C (99%): pH 5: 55 µg/l pH 7: 102 µg/l pH 9: 109 µg/lThe differences in water solubility is not considered
Relative density (state purity) $1.80-1.86 (96.8\%-98.8\%)$ Surface tensionNot applicable as the solubility in water is below 1 mg/lVapour pressure (in Pa, state temperature) $<5 \times 10^{-7}$ Pa at 25 °C by direct measurement (98.8%) 4.3×10^{-17} Pa at 25 °C by extrapolation from measurements in the range 190-210°C (>98%)Henry's law constant (Pa m³ mol ⁻¹) 3.48×10^{-13} Pa $*$ mol/m³ (from extrapolated vapour pressure at 25°C and water solubility of 39 µg/l at 6.3- 6.8)Solubility in water (g/l or mg/l, state temperature) $49 µg/l at 10°C$, $60 µg/l at 20 °C and 150µg/l at 30°C innon-buffered water at pH 5.9-7.1 (99%)In buffered solutions at 25°C (99%):pH 5: 55 µg/lpH 7: 102 µg/lpH 9: 109 µg/lIn bufferences in water solubility is not considered$
Surface tensionNot applicable as the solubility in water is below 1 mg/lVapour pressure (in Pa, state temperature) $<5 \times 10^{-7}$ Pa at 25°C by direct measurement (98.8%) 4.3×10^{-17} Pa at 25 °C by extrapolation from measurements in the range 190-210°C (>98%)Henry's law constant (Pa m³ mol ⁻¹) 3.48×10^{-13} Pa $*$ mol/m³ (from extrapolated vapour pressure at 25°C and water solubility of 39 µg/l at 6.3– 6.8)Solubility in water (g/l or mg/l, state temperature) $49 \mu g/l$ at 10°C, $60 \mu g/l$ at 20 °C and 150µg/l at 30°C in non-buffered water at pH 5.9–7.1 (99%) In buffered solutions at 25°C (99%): pH 5: 55 µg/l pH 7: 102 µg/l pH 9: 109 µg/l The differences in water solubility is not considered
Vapour pressure (in Pa, state temperature) $<5 \times 10^{-7}$ Pa at 25°C by direct measurement (98.8%) 4.3×10^{-17} Pa at 25 °C by extrapolation from measurements in the range 190-210°C (>98%)Henry's law constant (Pa m³ mol ⁻¹) 3.48×10^{-13} Pa * mol/m³ (from extrapolated vapour pressure at 25°C and water solubility of 39 µg/l at 6.3– 6.8)Solubility in water (g/l or mg/l, state temperature) $49 µg/l at 10°C, 60 µg/l at 20 °C and 150µg/l at 30°C innon-buffered water at pH 5.9–7.1 (99%)In buffered solutions at 25°C (99%):pH 5: 55 µg/lpH 7: 102 µg/lpH 9: 109 µg/lThe differences in water solubility is not considered$
 4.3 x 10⁻¹⁷ Pa at 25 °C by extrapolation from measurements in the range 190-210°C (>98%) Henry's law constant (Pa m³ mol⁻¹) 3.48 x 10⁻¹³ Pa * mol/m³ (from extrapolated vapour pressure at 25°C and water solubilityof 39 µg/l at 6.3–6.8) Solubility in water (g/l or mg/l, state temperature) 49 µg/l at 10°C, 60 µg/l at 20 °C and 150µg/l at 30°C in non-buffered water at pH 5.9–7.1 (99%) In buffered solutions at 25°C (99%): pH 5: 55 µg/l pH 7: 102 µg/l pH 9: 109 µg/l The differences in water solubility is not considered
 Henry's law constant (Pa m³ mol ⁻¹) 3.48 x 10⁻¹³ Pa * mol/m³ (from extrapolated vapour pressure at 25°C and water solubility of 39 μg/l at 6.3–6.8) Solubility in water (g/l or mg/l, state temperature) 49 μg/l at 10°C, 60 μg/l at 20 °C and 150μg/l at 30°C in non-buffered water at pH 5.9–7.1 (99%) In buffered solutions at 25°C (99%): pH 5: 55 μg/l pH 7: 102 μg/l pH 9: 109 μg/l The differences in water solubility is not considered
Solubility in water (g/l or mg/l, state temperature)49 μg/l at 10°C, 60 μg/l at 20 °C and 150μg/l at 30°C in non-buffered water at pH 5.9–7.1 (99%)In buffered solutions at 25°C (99%): pH 5: 55 μg/l pH 7: 102 μg/l pH 9: 109 μg/lpH 9: 109 μg/l
In buffered solutions at 25°C (99%): pH 5: 55 µg/l pH 7: 102 µg/l pH 9: 109 µg/l The differences in water solubility is not considered
significant or to be attributed to any dissociation under the conditions of the test.
Solubility in organic solvents (in g/l or mg/l state Technical material (97.1%) in mg/l
temperature) temperature temp
Purified material (99.5%) in mg/l:
$\frac{10^{\circ}\text{C}}{17} \qquad \frac{20^{\circ}\text{C}}{20} \qquad \frac{30^{\circ}\text{C}}{20}$
$\begin{array}{ccc} \text{methanol} & 1/ & 20 & 28 \\ \text{acetone} & 188 & 239 & 278 \end{array}$
Stability in organic solvents used in biocidal products including relevant breakdown products Showed to be stable at a concentration of 2% copper pyrithione in an antifouling paint containing >60 xylenes for two weeks at 54°C
Partition coefficient (log Pow) (state temperature)For purified material in distilled water at pH 7 and 21°C (99.0%): log Pow=2.44 For technical material in distilled water at pH 5.8-6.1 and 22.5°C (>98%): log Pow=2.84No significant pH dependency expected but given the findings for the water solubility a log Pow of ~2.7 at pH 5 is anticipated.
Hydrolytic stability (DT ₅₀) (state pH and temperature) Se chapter 4 below.
Dissociation constant Copper pyrithione does not have acid or base properties.

Copper	pyrithione
--------	------------

	Moreover, a formation constant of >8.5 for the complex copper pyrithione is given in the open literature which indicates that copper pyrithione is stable in the environmentally relevant pH range. The pKa for free pyrithione is quoted as 4.67 in open literature.
UV/VIS absorption (max.) (if absorption > 290 nm state ϵ at wavelength)	In acetonitrile (99.0%): $\underline{\lambda_{max} [nm]}$ $\underline{\epsilon (1 \mod^{-1} \cdot cm^{-1})}$ 250.1 39504 319.8 16105 570.1 89.8
	In methanol (>99.9%): pH 2: $\lambda_{max} [nm] = \varepsilon (1 \mod^{-1} \cdot cm^{-1})$ 247 37700 321 17100 Neutral: $\lambda_{max} [nm] = \varepsilon (1 \mod^{-1} \cdot cm^{-1})$ 249 37400 319 17100
	pH 9: $\lambda_{max} [nm]$ $\epsilon (1 \text{ mol}^{-1} \cdot cm^{-1})$ 248 37200 320 16500
Photostability (DT_{50}) (aqueous, sunlight, state pH)	Se chapter 4 below.
Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm	In solutions of 0.1–1 µg/l of these pyrithiones: $\Phi^{c}_{E} = 0.11$ for copper pyrithione $\Phi^{c}_{E} = 0.14$ for zinc pyrithione $\Phi^{c}_{E} = 0.15$ for sodium pyrithione $\Phi^{c}_{E} = 0.11$ –0.24 for zinc pyrithione with 2.5 µg/l Cu ²⁺ was added.
Flammability	Not highly flammable (≥98%)
Explosive properties	Not explosive (≥98%))

Classification and proposed labelling

with regard to physical/chemical data with regard to toxicological data

with regard to fate and behaviour data with regard to ecotoxicological data

None

T+; R21/22, R26, R37, R41, R48/23/25, R63 GHS: H311, H301, H330, H335, H318, H372, H361

R50

GHS: H400 (M = 100), H410 (M = 100)

Chapter 2: Methods of Analysis

Analytical methods for the active substance

Technical active substance (principle of method)	HPLC-UV
Impurities in technical active substance (principle of method)	Confidential-see the document III-A confidential Annex for the respective manufacturer.
Analytical methods for residues	
Soil (principle of method and LOQ)	Pyrithione as a derivative (appropriate in relation to the residue definition Total pyrithione expressed as copper pyrithione): LC-MS/MS (LOQ 5 µg/kg)
Air (principle of method and LOQ)	Copper pyrithione (proposed residue definition): HPLC-UV (LOQ $0.58 \ \mu g/m^3$).
Water (principle of method andLOQ)	Pyrithione as a derivative (appropriate in relation to the residue definition Total pyrithione expressed as copper pyrithione): LC-MS/MS (LOQ 0.1 µg/l for drinking and sea water)
Body fluids and tissues (principle of method and LOQ)	2-pyridinethiol-1-oxide glucoronide (major rat metabolite; proposed residue definition): LC-MS/MS (LOQ 50 μg/l)
	Due to rapid metabolism and excretion of copper pyrithione in the rat no residue definition is proposed for body tissues
Food/feed of plant origin (principle of method and LOQ for methods for monitoring purposes)	Not relevant as exposure is not expected
Food/feed of animal origin (principle of method and LOQ for methods for monitoring purposes)	In general no method is required as exposure is not expected.
	For fish and shellfish a tentative residue definition as Total pyrithione expressed as copper pyrithione has been proposed by RMS in the absence of data showing no exposure at all.
	For fish: Pyrithione as a derivative (appropriate in relation to the proposed tentative residue definition): LC-MS/MS (LOQ $0.5 \mu g/kg$)
	No more data has been requested for shell-fish as the status on the requirement for a method at all is unclear.

Chapter 3: Impact on Human Health

Absorption, distribution, metabolism and excretion in mammals

Following oral administration, copper pyrithione disassociates to liberate Cu and the pyrithione moiety, which are then absorbed independently. Absorption is slow but extensive through the GI tract. Oral absorption of pyrithione is 80–90 %.
Copper pyrithione is slowly absorbed via the skin. Human skin <i>in vitro</i> (copper pyrithione dissolved in ethanol, 16mg/ml, 1.6% w/v): <i>ca</i> 3 %.
For the different products evaluated the following dermal absorption has been used for calculations (discussed and agreed at TMIII 2011:
Dermal absorption 3% Dermal absorption 0.6 % Dermal absorption 5% Dermal absorption 3 %
The highest tissue levels were observed in liver and kidneys. A high $T_{1/2}$ value in whole blood and spleen indicates retention of blood cells. Radioactivity was also found in spleen, lungs, skin, heart, and adrenals.
No potential for accumulation.
Copper pyrithione is extensively and rapidly excreted (>80 % in 48 h, >95 % in 72 h), principally via the urine as metabolites (65–94 %), faecal excretion being a minor route of excretion (2.6–20 %).
Major metabolite: 2-pyridinethiol-1-oxide-S- glucuronide. (read across studies with zinc pyrithione and Na PT)

Acute toxicity

Rat LD ₅₀ oral	200–500 mg/kg bw
Rat LD ₅₀ dermal	400–2000 mg/kg bw
Rat LC ₅₀ inhalation	0.07 mg/L (4 h, nose only)
Skin irritation	Not irritating
Eye irritation	Corrosive
Skin sensitization (test method used and result)	Not sensitising (maximisation test and Buehler test)

Repeated dose toxicity

Species/ target / critical effect

Rat (oral): mortality, hind limb paralysis, muscle atrophy and degeneration, emaciation, body weight decrease and effect on kidneys. Rat (dermal): reduced bw gain and food consumption in

females. Rat (inhalation): mortality, reduced bw, decreased thymus and spleen weight, bronchial interstitial pneumonitis, increased lactate dehydrogenase in the BALF.

Lowest relevant oral NOAEL / LOAEL	 Acute NOAEL = 2 mg/kg bw/day based on effects seen after 2.5 hours in a 90 day rat study with sodium pyrithione. Medium term NOAEL = 0.5 mg/kg bw/day estimated by taken all available medium time pyrithione studies in
	account (7 with copper pyrithione, 3 with zinc pyrithione and 5 with sodium pyrithione, 13 on rats, one on rabbits and one on dogs).
	Long term NOAEL = 0.25 mg/kg bw/day based on LOAELs from two 2 year sodium pyrithione rat studies.
Lowest relevant dermal NOAEL / LOAEL	Medium term NOAEL = 100 mg/kg bw/day based on a 90 day rat study with zinc pyrithione.
	Long term NOAEL = 40 mg/kg bw/day based on 80
	week cancer study on mouse.
Lowest relevant inhalation NOAEL / LOAEL	Systemic medium term NOAEC = 0.0015 mg/L based on a 28 day rat study.
	Local medium term NOAEC = 0.005 mg/L based on a 28 day rat study.
Genotoxicity	
Genotoxicity	Clastogenic in vitro
	Not genotoxic in vivo
Carcinogenicity	
Species/type of tumour	Rat / no evident test substance-induced tumour increase

Species/type of tumour lowest dose with tumours

Reproductive toxicity

Species/ Reproduction target / critical effect

Lowest relevant reproductive NOAEL / LOAEL

Species/Developmental target / critical effect

Developmental toxicity

 $Lowest\ relevant\ developmental\ NOAEL\ /\ LOAEL$

Neurotoxicity / Delayed neurotoxicity

Species/ target/critical effect

Lowest relevant NOAEL / LOAEL

Rat / no evident test substance-induced tumour increase Not applicable

Rat and Rabbit: It can not be excluded that copper pyrithione can cause reprotoxic effects.

NOAEL = 0.7 mg/kg bw/day (based on sodium pyrithione rat study)

Rat and Rabbit: post inplantation loss, resorption, skeletal malformations

NOAEL = 0.5 mg/kg bw/day (based on zinc pyrithione rabbit study)

Rat (acute): mortality, reduced motor activity, reduced bw, food intake and body temperature Rat (subchronic): mortality in one male

Rat (acute) NOAEL = 25 mg/kg bw (study with zinc pyrithione) Rat 90-day NOAEL = 1.25 mg/kg bw/day

Connor	nowithing a
Copper	pyriumone

Product type 21

Other toxicological studies

	None
Medical data	
	During 30 years of manufacturing experience with

During 30 years of manufacturing experience with pyrithiones, minor transient mucous membrane irritation has been noted but no neurological abnormalities have been identified.

Medical surveillance on manufacturing plant personnel is performed periodically; no abnormalities have been reported. No data exist in public literature on clinical cases or poisoning incidents.

Summary

	Value	Study	Safety factor
ADI (acceptable daily intake, external long-term reference dose)	0.0025 mg/kg bw/day	Two chronic studies with sodium pyrithione	200 (as only LOAEL could be derived)
AEL-S (Operator Exposure) short term and intermediate inhalation AEL	0.002 mg/kg bw/day	28 day inhalation study	200 (as unexplained mortality was seen at LOAEL)
Short and intermediate dermal AEL is the same as intermediate oral AEL	0.005 mg/kg bw/day	Based on all available oral copper pyrithione, zinc pyrithione and sodium pyrithione subacute, subchronic, teratogenicity and 2-generation studies	100
Long-term inhalation AEL	0.001 mg/kg bw/day	28 day inhalation study	400 (extrapolation from short-term to long-term exposure)
Long-term dermal AEL is the same as ADI	0.0025 mg/kg bw/day	Two chronic studies with sodium pyrithione	200 (as only LOAEL could be derived)
ARfD (acute reference dose)	0.02 mg/kg bw/day	Effects seen after 2.5 hour in a 90 day study with sodium pyrithione	100

~	• / • •
Copper	pyrithione

Product type 21

Professional users	
Production of active substance:	Operator exposure at this level is considered to be adequately addressed under the framework of The Chemical Agents at Work Directive (98/24/EC, within 89/391/EEC), and controlled using PPE and RPE as appropriate according to The Personal Protective Equipment at Work Regulations 1992 (EU Directive 89/656/EEC).
Formulation of biocidal product	Operator exposure at this level is considered to be adequately addressed under the framework of The Chemical Agents at Work Directive (98/24/EC, within 89/391/EEC), and controlled using PPE and RPE as appropriate according to The Personal Protective Equipment at Work Regulations 1992 (EU Directive 89/656/EEC).
Intended uses	Professionals: Application by brush and roller ("HEEG Opinion on the paper by Links et al. 2007 on occupational exposure during application and removal of antifouling paints" that was endorsed at TM IV 2012) Net coating
Secondary experies	Net deployment
Non professional users	Removal of paint ("HEEG Opinion on the paper by
Tron-professional users	Links et al. 2007 on occupational exposure during application and removal of antifouling paints" that was endorsed at TM IV 2012
Indirect exposure as a result of use	No risk for consumers eating seafood

Acceptable exposure scenarios (including method of calculation)

Chapter 4: Fate and Behaviour in the Environment

Route and rate of degradation in water (for pyrithione unless otherwise stated)

Hydrolysis of active substance and relevant metabolites (DT_{50}) (state pH and temperature)	Probably related to pH. These half-lives are determined at 20–25°C. 63–infinite half-life at pH 3 (n = 2) 8–230 days at pH 5 (n = 4) 108–infinite days at pH 7 (n = 5) 12.9–96 days in seawater at pH 8.2 (n = 3) 7.4–123 days at pH 9 (n = 3)
Photolytic / photo-oxidative degradation of active substance and resulting relevant metabolites	41–infinite half-life at pH 11 (n = 2). Pyrithiones phototransform readily in sunlight, please see quantum yield in previous table (Chapter 1). Different metabolites form depending on starting concentration, pH and water type. In seawater at low concentrations, irradiance in 12-hour cycles produced PSiA at a maximum of 44% after one hour, and PSA at a maximum of 74% after 14 days. No other metabolites were relevant under these conditions.
Readily biodegradable (yes/no)	No, for suspension of zinc- and copper pyrithione Yes, for solution of sodium pyrithione
Biodegradation in seawater	Metabolite PSA: ready biodegradable Single first order biological degradation rate in seawater was $0.21-0.23 d^{-1}$ (^{sfo} DT ₅₀ of 4.4.–4.7 days) at 22°C, after a lag phase of 2–3 days. Metabolite PSA: DT50 = 15 days coastal water, 50 days open marine water (TGD default values for a ready
Non-extractable residues	Often high, but never exceeded 70% of the added dose to the system.
Distribution in water / sediment systems (active substance)	In one experiment with the test system OECD 303 A (simulation test aerobic sewage treatment activated sludge units) 98.2% of the influent radioactivity dissipated from the water into the sediment. In an experiment with an aerobic test system made of test tubes with 5 g dw sediment and 10 ml seawater, 17% of the radioactivity remained in water at day 0, and it increased to 38% on day 30.
	In an experiment with a microcosm made of aquarias with 3.56 kg dw sediment and 127 l seawater, $\sim 100\%$ of the added dose remained in water day 0, and decreased to $\sim 70\%$ by day 30.
Distribution in water / sediment systems (metabolites)	Not explicitly studied for metabolites, but in a microcosm made of 4.88 kg ww sediment and 31.3 l freshwater, the metabolite PSA lay at 16–19 μ g/kg ww sediment, and 23–26 μ g/l in the water column during day 12–55. During the same period, the added mother substance, zinc pyrithione, had decreased from an initial concentration of 50 μ g/l to below detection limit in both sediment and water.
Degradation in water sediment system	Depending on how a PEC model is parameterised different combinations of degradation data may be

appropriate as inputs to the model. In the case with the MAMPEC model we decided to use the following:
• aerobic water-sediment whole system degradation DT50 of 21 d (at 25°C)as input for sediment compartment (extrapolations to other temperatures: 76 days at 9°C; 59 days at 12°C).
• anaerobic water-sediment whole system degradation DT50 of 0.12–0.41 d (as supporting information) (extrapolations to other temperatures: 0.43–1.5 days at 9°C; 0.34–1.2 days at 12°C).
5.2 d as input of for water column (extrapolation D150 of other temperatures: 13 days at 9°C; 10 days at 12°C)
Metabolite PSA:
• DT50 of 1000 days as input for sediment compartment (a "zero value").
• aerobic water-only whole-system degradation DT50 of 15–50 days as input of for water column.
(extrapolations to other temperatures: 36–121 days at 9°C; 28–95 days at 12°C)

Route and rate of degradation in soil

Mineralization (aerobic)	Not determined
Laboratory studies (range or median, with number of measurements, with regression coefficient)	DT_{50lab} (aerobic): 44 hours (extrapolated to 12°C) (SFO, regression coefficient is not applicable since it is a 2-point estimate based on 2 experiments, where DT_{50} was 13 h and 15.5 h at 25°C, pH 6.6 sandy loam).
	DT _{90lab} (20°C, aerobic): Not studied, but 73.7% and 67.2% were observed to degrade during an ageing period of 25 h in darkness (26.3% and 32.8% remaining as zinc pyrithione).
	DT _{50lab} (10°C, aerobic): not studied
	DT _{50lab} (20°C, anaerobic): not studied
	Degradation in the saturated zone: not explicitly studied, but the soil leaching column study indicate similar rate as during the ageing period, during which the soil was not water saturated.
Field studies (state location, range or median with number of measurements)	DT _{50f} : not investigated
	DT _{90f} : not investigated
Anaerobic degradation	Not investigated
Soil photolysis	Not investigated
Non-extractable residues	In the soil columns for the leaching study 6.7–39.1% of the 14C dose was non-extractable. Different soil types and leaching times were studied, and both factors may have influenced the percentage.
Relevant metabolites - name and/or code, % of applied a.i. (range and maximum)	OMSiA (omadine sulfinic acid) and OMSA (omadine sulfoninc acid) were detected as the largest metabolites in the leachate water from the soil study. Concentration of each was around and above 10% in 4 of the 11 studied soil columns.

Copper pyrithione	Product type 21 7th BPR Meeting Sept 20
Soil accumulation and plateau concentration	No accumulation of pyrithione seen. in a single dose study. (Metal copper ion is not studied).
Adsorption/desorption	
Ka , Kd	Not relevant; highly variable with pH, concentration tested.
Ka,oc , Kd,oc	Ka,oc for 14C-pyrithione ranged from 780 to 11,000 l/kg _{OC} at 1 mg/l (log Ka,oc 2.9–4.0). Determine from Freundlichfitting of isotherm within 0.5–4.0 mg/ Kd,oc was not significantly different from Ka,oc Metabolite PSA: log Koc = 3 (log l//kg oc) at ~20 μ g/
pH dependence (yes / no) (if yes type of dependence)	Yes, pH dependent. The adsorption and desorption $\log K_{OC}$ varied linearly
dependence)	with soil or sediment pH. It was positively related to p in experiments where the total pyrithione concentratio was 0.5–4 mg/l, but negatively related to pH in experiments where the total pyrithione concentration was 10–100 mg/l.
	It is not meaningful to make an average of the Ka _{,OC} , since it varies strongly with pH, tested concentration, sorption time and water type.
	A rough estimate of for fate calculations is to use log $Koc = 3.5$ (pH 7, soil or sediment, 1 mg/l).
	A modeller which is about to use the Koc values must consider that Koc is expected to be roughly 1 log unit lower at pH 5 (in systems where the pyrithione concentration is lower than 4 mg/l), in essence log Ko = 2.5 (pH 5, soil or sediment, 1 mg/l).
	The modeller must also consider that judging from a review of varying studies and the non-linearity constant observed in the OECD tests, the Koc will be be roughl 1 log unit higher (i.e. log Koc = 5) in solutions with pyrithione concentrations $\sim 1 \mu g/l$, possibly even higher at yet lower solute concentrations.
	In-situ Koc values are possibly as high as $\log \text{Koc} = 6$ but then the influence of aged sorption, and bound residue formation can not be separated.
	Until next round of evaluation of biocides $(5-10 \text{ years} \text{ from 2012})$, the TM agreed all PT 21 applicants should submit new sorption studies. Until then a compromise log Koc of 4 (l/kg_{OC}) can be entered for MAMPEC calculations for pyrithione.
Fate and behaviour in air	

Direct photolysis in air	Not investigated.
Quantum yield of direct photolysis	Not investigated
Photo-oxidative degradation in air	AOPWIN model using OH radical concentration as in the TGD (0.5×10^6 radicals per ml) predicts a DT ₅₀ of 26–160 h
Volatilization	No volatilisation expected from water due to low Henrys laws constant. Air–water partitioning: log $K_{AW} \sim -6$
	Octanol–air partitioning: log $K_{OA} \sim 9$.

Monitoring data, if available

Soil (indicate location and type of study)	No known studies.
Surface water (indicate location and type of study)	Swedish monitoring (Woldegiorgis et al., 2007), pyrithione concentration were below the LOD of 15 ng/l in 14 out of 17 samples on incoming water to STP. In their three most contaminated samples on incoming water to STP concentrations ranged from 1.7 to 32 μ g/l. In recipients all water samples were below LOD. All samples of bottom sediment in recipients were below LOD (20 μ g/kg dw).
	Fish was also analysed, but at the time of the study the analytical problems were to large.
	Metabolite PSA: No data available.
	Harino et al (2007) reported copper pyrithione above detection limits (LOD was 8 µg/kg dw) in three out of 32 bottom sediment (Ekman-Birge grab) samples taken in July 2005 in Otsuchi Bay, Northwest coast of Japan.
Ground water (indicate location and type of study)	No known studies.
Air (indicate location and type of study)	No known studies.

Chapter 5:	Effects on Non-target Species
------------	-------------------------------

Toxicity data for aquatic species (most sensitive species of each group) Pyrithion	Toxicit	v data for a	aquatic species (n	nost sensitive spec	cies of each group) Pvrithione
--	---------	--------------	--------------------	---------------------	--------------------	---------------------

Species	Time-scale	Endpoint	Toxicity	
Fish				
Pimephales promelas "	96 hours "	LC50 NOEC	2.6 μg/l (TWA) 1.1 μg/l (TWA)	
"	32 days "	LOEC* NOEC* *survival, length, weight, behaviour all gave same	1.9 μg/l (TWA) 0.98 μg/l (TWA)	
	In	vertebrates		
Marine copepod Mysidopsis bahia "	48 hours	LC50 NOEC	6.3 μg/l (TWA) 1.6 μg/l (TWA)	
Marine sea urchin Arbacia puntulata "	3 hours	LOEC fertilization NOEC fertilization	1.7 μg/l (initial conc.) 1.0 μg/l (initial conc.)	
Paracentrotus lividus (geomean two studies)	48 hours "	EC50 larval growth EC50 embryonic develop.	4.2 μg/l (TWA) 3.7 μg/l (TWA)	
Marine bivalve <i>Mytilus edulis</i>	48 hours	EC50 embryonic develop.	2.2 μg/l (TWA)	
Marine tunicate Ciona intestinalis	48 hours	EC50 settlement of newly hatched larvae	30.2 μg/l (TWA)	
Freshwater sediment dweller Hyalella azteca	10 days	EC50	1.9 mg/kg ww (TWA)	

Copper pyrithione

Product type 21

Algae				
Marine diatom Skeletonema costatum (geometric mean from four studies)	48 hours	EC50 NOECtwa	0.80 μg/l (TWA.) 0.176 μg/l (TWA)	
Microorganisms				
Activated sludge	30 minutes	EC50 respiration NOEC respiration	>0.32 mg/l (nominal) 0.032 mg/l (nominal)	
Pseudomonas putida	16 hours	EC50 growth inhibition NOEC growth inhibition	0.22 mg/l (nominal) 0.063 mg/l (nominal)	

Toxicity data for aquatic species (most sensitive species of each group) Metabolite PSA

Species	Time-scale	Endpoint	Toxicity		
Fish					
Pimephales promelas "	96 hours " 28 days	LC50 NOEC NOEC	>55.2 mg/l (TWA) 55.2 mg/l (TWA) >10 µg/l (nominal)		
Cyprinodon variegates "	96 hours	LC50 NOEC	>127 mg/l (TWA) 127 mg/l (TWA)		
Oncorhyncus mykiss "	96 hours	LC50 NOEC	>46.9 mg/l (TWA) 28.5 mg/l (TWA)		
	Invertebrates				
Daphnia magna "	48 hours	LC50 mortality (immob.) NOEC	>122 mg/l (TWA) 122 mg/l (TWA)		
Mysidposis bahia "	96 hours	LC50 mortality NOEC	71.6 mg/l (TWA) 51.9 mg/l (TWA)		
Crassostrea virginica	96 hours	LC50 shell growth NOEC	85.6 mg/l (TWA) 51.1 mg/l (TWA)		
Algae					
Marine diatom Skeletonema costatum	120 hours "	EC50 NOECini	> 32 mg/l (TWA.) 5.46 mg/l (TWA.)		
	Microorganisms				
Activated sludge		no tests available	_		

Effects on earthworms or other soil non-target organisms

Reproductive toxicity to Collembola (Folsomia candida)	Static single dose, stock solutions mixed into soil, nominal concentrations	
	LC50= 329 mg/kg dw soil (nominal) 7,14-d NOEC moratilty = 200 mg/kg dw soil (nominal) 28-d NOEC reproduction =100 mg/kg dw soil (nominal) 28-d NOEC reproduction = 8.7 mg/kg dw soil (16-d TWA)	
Earthworm (<i>Eisenia fetida</i>)	Static single dose, stock solutions mixed into soil, nominal concentrations 7, 14-d NOEC mortality = 400 mg/kg dw soil 28-d NOEC body weight = 40 mg/kg dw soil	
Copper pyrithione	Product type 21 7th BPR Meeting Sept 2014	
--	--	
Effects on soil micro-organisms		
Nitrogen mineralization	Not studied	
Carbon mineralization	Not studied	
Effects on terrestrial vertebrates	-	
Acute toxicity to mammals	See human toxicity section regarding studies on rats	
Acute toxicity to birds	For Northern Bobwhite (<i>Colinus virginanus</i>) the 14 days LD50 was 60 mg/kg body weight, NOEC was 31.2 mg/kg body weight	
Dietary toxicity to birds	For Northern Bobwhite (<i>Colinus virginanus</i>) the 8 days LC50 was 1110 mg/kg food, LC0 was 492 mg/kg food	
Reproductive toxicity to birds	Not studied	
Effects on honeybees		
Acute oral toxicity	Not studied	
Acute contact toxicity	Not studied	
Effects on other beneficial arthropods		
Acute oral toxicity	Not studied	
Acute contact toxicity	Not studied	
Acute toxicity to	Not studied	
Bioconcentration		
Bioconcentration factor (BCF)	A typevalue for BCF in fish is 7.7 l/kg ww or log BCF = 0.88 log (l/kg ww). For BCF in invertebrates the typevalue is 8.0 l/kg ww or log BCF = 0.91 log (l/kg ww).	
Depuration time (DT ₅₀)	3.4–14 days (shortest–longest from two Oyster tests)	
(DT ₉₀)	11–23 days (low and high dose, one Oyster test)	
Level of metabolites (%) in organisms accounting for > 10 % of residues	g Not determined in experiments where BCF was low (3 out of 4 tests). In a test where BCF was high, the 14C-activity was associated with either insoluble or polar degradation products. However, this test is considered not reliable due to guideline protocol deviations.	
Chapter 6: Other End Points (e	xamples)	
Toxicity to aquatic plant (<i>Lemna gibba</i> G3)	(nominal concentrations, 7 water renewals per day) 7+7-d NOEC of 4.0 μ g/l, 7+7-d EC50 of 9.6 μ g/l (the applicant will reinterpret the EC50 since it is not based on growth rate from frond number)	
Toxicity to aquatic plant	(nominal concentrations 1 water renewal per day)	
(Lemna gibba)	7-d NOEC of 21 μ g/l 7-d EC50 of >78 μ g/l	

Toxicity to aquatic plant (*Lemna gibba*)

(nominal concentrations, no water renewal)

Copper pyrithione

Toxicity to higher plants (seedling emergence, *Oryzea orysa* sative)

Toxicity to higher plants (seedling emergence, various species)

Toxicity to higher plants (seedling emergence, *Oryzea orysa* sative)

Other

7-d NOEC (not reported) 7-d EC50 360–1400 μg/l

single dose to soil, 5 doses studied, 16-days post emergence

NOEC = 100 mg/kg dw soil (nominal)

single dose + watered by solution every day NOEC >0.50 µg/l (nominal, copper pyrithione) NOEC >0.49 µg/l (nominal, zinc pyrithione)

5 test conc. of ZPT sprayed onto the plants for 14 day NOEC = 49 g/l spray solution (nominal) LOEC = 88 g/l spray solution (nominal) EB50 = 116 g/l spray solution (nominal)

The open research literature contains studies on marine or aquatic enclosures/mesocosms and effects are evaluated using the concept of pollution-induced community tolerance (PICT).

Other researchers report endpoints such as phosphate flux from sediment to water are studied, and avoidance tests with sediment dwellers.

Figure 2 All scenarios which are assessed with respect to risk for the human health and the environment.

Figure 2 is intended to give an overview of all scenarios which are assessed for risk to human health and also with respect to the environment when antifouling paint is used on different types of boats and ships. An antifouling paint is assumed to give rise to exposure in all these scenarios, and the risk to human health and to the environment needs to be acceptable in the whole life of the paint (**A**–**J**).

A represent painting during new building of commercial ships, an activity which is assumed to be performed by professional workers. For the human health and professional use the exposure from all evaluated products are acceptable when brush and roller are used. However, the scenario "airless spraying" causes unacceptable exposure for the same products. For the environment, all application procedures leads to emission to soil and groundwater, for which risks are unacceptable. (But are unacceptable for all antifouling products which are discussed at ongoing CA-meetings during 2013).

B represent new painting of non-commercial boats, a job which assumed to be done by non-professionals. For the human health, the antifouling products can not be acceptable for amateur use due to a unacceptable risk.. For the environment risks are unacceptable for soil and groundwater.

C, **D** and **E** represent in-service life of the paints, where leaching from the boat hulls gives exposure of organisms in the water column, and organisms living in the bottom sediments. For these scenarios risks are acceptable for the environment, and there are no health risk scenarios to assess.

F represent contamination of seafood (fish, oysters etc.) as a result of emissions from any activity (A, B, G, H, I) or leaching from the in-service life (C, D, E). Contamination of seafood is acceptable with respect to secondary poisoning (transfer in ecosystem food webs) and the contamination is also acceptable with respect to exposure of humans which are eating the sea food.

G represent removal of paint (scraping, sand-blasting etc) and re-painting of commercial ships, a job which is assumed to be performed by professional workers. The product gives acceptable exposure in these scenarios and it might be possible to produce a product that also gives acceptable exposure; if the copper pyrithione concentration is not too high and the dermal absorption can be shown to be really low. For the environment, risk to soil and groundwater is unacceptable.

H represent dito activity but for smaller boats, in essence work assumed to be done by nonprofessionals (see photo in Figure 2.2.3.4). Please see the arguments regarding amateur use of copper pyrithione products under A. It can be added that it seems possible to produce a product that would give acceptable exposure for the removal of paint scenario. For the environment risk to soil and groundwater is unacceptable.

I represent contamination of sewage treatment plants (STP) due to transport from wastecollection facilities at marinas and boat yards which are connected to STP. Risk is acceptable for the microorganisms in the sludge, and also to the recipient water (fresh water and marine recipient).

J represent application of contaminated sewage sludge onto agricultural- and grassland soils. Risk due to emissions from antifoulant paints are acceptable to the soil organisms. (Contamination of crops or groundwater is not assessed).

Pro- duct type	Target organisms	Claim*	User category	Concentra- tion used	Remarks
PT 21	Fouling species: slime, aquatic	Not provided.	An industrial use is not intended. Professional use only, by spraying. Not intended to be used by general public.	1.5% by weight in the wet paint.	b.v.,
PT 21	plants (including weeds, grasses, etc.),	Not provided.	Application will only be carried out by professionals, who may use spraying techniques and/or brush and roller.	3.5% by weight in the wet paint.	й. 1
PT 21	(barnacles, mussels, other shell fouling etc.)	Antifouling paint Prevents settlement and inhibits growth of fouling organisms on surfaces intended to be submersed into the aquatic environment.	The product is only intended to be used by professionals.	2.9% by weight in the wet paint.	
PT 21		Antifouling paint: effective against slime, algae, and invertebrate fouling species. is a High performance TBT free, self polishing copolymer (SPC) antifouling system with patented copper acrylate technology.	Professional application of antifouling product to ships and other objects intended to be submersed into water. Non-professional application of antifouling product to leasure craft	4.01% by weight in the wet paint.	
PT 21		Not provided.	Professional application of antifouling product to ships and other objects intended to be submersed into water. Non-professional application of antifouling product to leisure craft	4.0% by weight in the wet paint.	Arch Chemicals "Dummy product 4%"
PT 21		Not provided.	Professional workers in facilities for fish net impregnation.	2.0% by weight in the wet paint.	Arch Chemicals "Dummy product 2%"

APPENDIX II: LIST OF INTENDED USES

* All applicants claim that copper pyrithione is a booster antifouling substance, in essence it is not the main biocide in the product, but acts to remove the most problematic fouling organisms. ** Please note that the environmental risk assessment is based on a fictive product containing 4% copper pyrithione by weight, with a theoretically estimated leaching rate (using the "CEPE mass balance method"). The PEC values for the specific product is however extrapolated from the dummy product, using the simplified assumption that leach rate is

Copper pyrithione	Product type 21	7th BPR Meeting Sept 2014

directly proportional to the active substance concentration.

APPENDIX III: LIST OF STUDIES

Section No / Reference No ⁹	Author(s) ¹⁰	Year	Title ¹¹ Source (where different from company) Company Report No. GLP (where relevant) (Un)Published	Data Protection Claimed (Yes/No)	Owner
Doc II and Doc I	Links, I; Van der Jagt, K. E.; Christopher, Y.; Lurvink, M.; Schinkel, J.; Tielemans, E.; van Hemmen, J. J.:	2007	Occupational Exposure During Application and Removal of Antifouling Paints. Annals of Occupational Hygiene 51(2):207-218	No	Open literature

APPENDIX IV: LIST OF STANDARD TERMS AND ABBREVIATIONS

List 1 : List of standard terms and abbreviations

Stand. term / Abbreviation	Explanation
А	ampere
ACh	acetylcholine
AChE	acetylcholinesterase
ADI	acceptable daily intake
ADME	administration distribution metabolism and excretion
ADP	adenosine diphosphate
AE	acid equivalent
AF	assessment factor
AFID	alkali flame-ionisation detector or detection
A/G	albumin/globulin ratio
ai or as	active ingredient or active substance
ALD ₅₀	approximate median lethal dose, 50%
ALT	alanine aminotransferase (SGPT)
Ann.	Annex
AOEL	acceptable operator exposure level
AMD	automatic multiple development
ANOVA	analysis of variance
AP	alkaline phosphatase
approx	approximate
ARC	anticipated residue contribution
ARfD	acute reference dose
as	active substance
AST	aspartate aminotransferase (SGOT)
ASV	air saturation value
ATP	adenosine triphosphate
BAF	bioaccumulation factor
BCF	bioconcentration factor
bfa	body fluid assay
BOD	biological oxygen demand
bp	boiling point

Stand. term / Abbreviation	Explanation
BPD	Biocidal Products Directive
BSAF	biota-sediment accumulation factor
BSE	bovine spongiform encephalopathy
BSP	bromosulfophthalein
Bt	Bacillus thuringiensis
Bti	Bacillus thuringiensis israelensis
Btk	Bacillus thuringiensis kurstaki
Btt	Bacillus thuringiensis tenebrionis
BUN	blood urea nitrogen
bw	body weight
с	centi- (x 10 ⁻²)
°C	degrees Celsius (centigrade)
СА	controlled atmosphere
CAD	computer aided design
CADDY	computer aided dossier and data supply (an electronic dossier interchange and archiving format)
cd	candela
CDA	controlled drop(let) application
cDNA	complementary DANN
CEC	cation exchange capacity
cf	confer, compare to
CFU	colony forming units
ChE	cholinesterase
CI	confidence interval
CL	confidence limits
cm	centimetre
CNS	central nervous system
COD	chemical oxygen demand
СРК	creatinine phosphatase
CPU	4-chlorophenylurea
cv	coefficient of variation
Cv	ceiling value
d	day(s)
DES	diethylstilboestrol
DFBA	2,6-difluorobenzoic acid
DIS	draft international standard (ISO)

Stand. term / Abbreviation	Explanation
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
dna	designated national authority
DO	dissolved oxygen
DOC	dissolved organic carbon
dpi	days post inoculation
DRP	detailed review paper (OECD)
DT _{50(lab)}	period required for 50 percent dissipation (under laboratory conditions) (define method of estimation)
DT90(field)	period required for 90 percent dissipation (under field conditions) (define method of estimation)
dw	dry weight
DWQG	drinking water quality guidelines
3	decadic molar extinction coefficient
EC ₅₀	median effective concentration
ECD	electron capture detector
ED ₅₀	median effective dose
EDI	estimated daily intake
EINECS	European inventory of existing commercial substances
ELINCS	European list of notified chemical substances
ELISA	enzyme linked immunosorbent assay
e-mail	electronic mail
EMDI	estimated maximum daily intake
EN	European norm
EPMA	electron probe micro-analysis
ERL	extraneous residue limit
ESPE46/51	evaluation system for pesticides
EUSES	European Union system for the evaluation of substances
F	field
F ₀	parental generation
F ₁	filial generation, first
F_2	filial generation, second

Stand. term / Abbreviation	Explanation
FBS	full base set
FELS	fish early-life stage
FIA	fluorescence immuno-assay
FID	flame ionisation detector
F _{mol}	fractional equivalent of the metabolite's molecular weight compared to the active substance
FOB	functional observation battery
f _{oc}	organic carbon factor (compartment dependent)
fp	freezing point
FPD	flame photometric detector
FPLC	fast protein liquid chromatography
g	gram(s)
GAP	good agricultural practice
GC	gas chromatography
GC-EC	gas chromatography with electron capture detector
GC-FID	gas chromatography with flame ionisation detector
GC-MS	gas chromatography-mass spectrometry
GC-MSD	gas chromatography with mass- selective detection
GEP	good experimental practice
GFP	good field practice
GGT	gamma glutamyl transferase
GI	gastro-intestinal
GIT	gastro-intestinal tract
GL	guideline level
GLC	gas liquid chromatography
GLP	good laboratory practice
GM	geometric mean
GMO	genetically modified organism
GMM	genetically modified micro- organism
GPC	gel-permeation chromatography
GPS	global positioning system
GSH	glutathione
GV	granulosevirus

Stand. term / Abbreviation	Explanation
h	hour(s)
Н	Henry's Law constant (calculated as a unitless value)
ha	hectare(s)
Hb	haemoglobin
HC5	concentration which will be harmless to at least 95 % of the species present with a given level of confidence (usually 95 %)
HCG	human chorionic gonadotropin
Hct	haematocrit
HDT	highest dose tested
hL	hectolitre
HEED	high energy electron diffraction
HID	helium ionisation detector
HPAEC	high performance anion exchange chromatography
HPLC	high pressure liquid chromatography or high performance liquid chromatography
HPLC-MS	high pressure liquid chromatography - mass spectrometry
HPPLC	high pressure planar liquid chromatography
HPTLC	high performance thin layer chromatography
HRGC	high resolution gas chromatography
Hs	Shannon-Weaver index
Ht	haematocrit
HUSS	human and use safety standard
Ι	indoor
I ₅₀	inhibitory dose, 50%
IC ₅₀	median immobilisation concentration or median inhibitory concentration 1
ICM	integrated crop management
ID	ionisation detector
IEDI	international estimated daily intake
IGR	insect growth regulator
im	intramuscular

Stand. term / Abbreviation	Explanation
inh	inhalation
INT	2-p-iodophenyl-3-p-nitrophenyl-5- phenyltetrazoliumchloride testing method
ip	intraperitoneal
IPM	integrated pest management
IR	infrared
ISBN	international standard book number
ISSN	international standard serial number
IUCLID	International Uniform Chemical Information Database
iv	intravenous
IVF	in vitro fertilisation
k (in combination)	kilo
k	rate constant for biodegradation
Κ	Kelvin
Ка	acid dissociation constant
Kb	base dissociation constant
K _{ads}	adsorption constant
K _{des}	apparent desorption coefficient
kg	kilogram
K _H	Henry's Law constant (in atmosphere per cubic metre per mole)
K _{oc}	organic carbon adsorption coefficient
Kom	organic matter adsorption coefficient
K _{ow}	octanol-water partition coefficient
Кр	solid-water partition coefficient
kPa	kilopascal(s)
l, L	litre
LAN	local area network
LASER	light amplification by stimulated emission of radiation
LBC	loosely bound capacity
LC	liquid chromatography
LC-MS	liquid chromatography- mass spectrometry

Stand. term / Abbreviation	Explanation
LC ₅₀	lethal concentration, median
LCA	life cycle analysis
LC-MS-MS	liquid chromatography with tandem mass spectrometry
LD ₅₀	lethal dose, median; dosis letalis media
LDH	lactate dehydrogenase
ln	natural logarithm
LOAEC	lowest observable adverse effect concentration
LOAEL	lowest observable adverse effect level
LOD	limit of detection
LOEC	lowest observable effect concentration
LOEL	lowest observable effect level
log	logarithm to the base 10
LOQ	limit of quantification (determination)
LPLC	low pressure liquid chromatography
LSC	liquid scintillation counting or counter
LSD	least squared denominator multiple range test
LSS	liquid scintillation spectrometry
LT	lethal threshold
m	metre
М	molar
μm	micrometre (micron)
MAC	maximum allowable concentration
MAK	maximum allowable concentration
MC	moisture content
МСН	mean corpuscular haemoglobin
MCHC	mean corpuscular haemoglobin concentration
MCV	mean corpuscular volume
MDL	method detection limit
MFO	mixed function oxidase
μg	microgram
mg	milligram

Stand. term / Abbreviation	Explanation
МНС	moisture holding capacity
MIC	minimum inhibitory concentration
min	minute(s)
МКС	minimum killing concentration
mL	millilitre
MLT	median lethal time
MLD	minimum lethal dose
mm	millimetre
MMAD	mass median aerodynamic diameter
mo	month(s)
MOE	margin of exposure
mol	mole(s)
MOS	margin of safety
mp	melting point
MRE	maximum residue expected
MRL	maximum residue level or limit
mRNA	messenger ribonucleic acid
MS	mass spectrometry
MSDS	material safety data sheet
MTD	maximum tolerated dose
MT	material test
MW	molecular weight
n.a.	not applicable
n-	normal (defining isomeric configuration)
n	number of observations
NAEL	no adverse effect level
nd	not detected
NEDI	national estimated daily intake
NEL	no effect level
NERL	no effect residue level
ng	nanogram
nm	nanometre
NMR	nuclear magnetic resonance
no, n°	number
NOAEC	no observed adverse effect concentration

Stand. term / Abbreviation	Explanation
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOED	no observed effect dose
NOEL	no observed effect level
NOIS	notice of intent to suspend
NPD	nitrogen-phosphorus detector or detection
NPV	nuclear polyhedrosis virus
NR	not reported
NTE	neurotoxic target esterase
OC	organic carbon content
OCR	optical character recognition
ODP	ozone-depleting potential
ODS	ozone-depleting substances
OEL	occupational exposure limit
ОН	hydroxide
OJ	Official Journal
OM	organic matter content
Ра	pascal
PAD	pulsed amperometric detection
2-PAM	2-pralidoxime
pc	paper chromatography
PC	personal computer
PCV	haematocrit (packed corpuscular volume)
PEC	predicted environmental concentration
PEC _A	predicted environmental concentration in air
PECs	predicted environmental concentration in soil
PEC _{SW}	predicted environmental concentration in surface water
PEC _{GW}	predicted environmental concentration in ground water
PED	plasma-emissions-detector
pН	pH-value
PHED	pesticide handler's exposure data
PIC	prior informed consent

Stand. term / Abbreviation	Explanation
pic	phage inhibitory capacity
PIXE	proton induced X-ray emission
рКа	negative logarithm (to the base 10) of the acid dissociation constant
pKb	negative logarithm (to the base 10) of the base dissociation constant
PNEC	predicted no effect concentration (compartment to be added as subscript)
ро	by mouth
РОР	persistent organic pollutants
ppb	parts per billion (10 -9)
PPE	personal protective equipment
ppm	parts per million (10 ⁻⁶)
PPP	plant protection product
ppq	parts per quadrillion (10 ⁻²⁴)
ppt	parts per trillion (10^{-12})
PSP	phenolsulfophthalein
PrT	prothrombin time
PRL	practical residue limit
РТ	product type
PT(CEN)	project team CEN
PTDI	provisional tolerable daily intake
PTT	partial thromboplastin time
QA	quality assurance
QAU	quality assurance unit
(Q)SAR	quantitative structure-activity relationship
r	correlation coefficient
r ²	coefficient of determination
RA	risk assessment
RBC	red blood cell
REI	restricted entry interval
RENI	Registry Nomenclature Information System
Rf	retardation factor
RfD	reference dose
RH	relative humidity
RL ₅₀	median residual lifetime

Stand. term / Abbreviation	Explanation
RNA	ribonucleic acid
RP	reversed phase
rpm	revolutions per minute
rRNA	ribosomal ribonucleic acid
RRT	relative retention time
RSD	relative standard deviation
S	second
S	solubility
SAC	strong adsorption capacity
SAP	serum alkaline phosphatase
SAR	structure/activity relationship
SBLC	shallow bed liquid chromatography
sc	subcutaneous
sce	sister chromatid exchange
SCAS	semi-continous activated sludge
SCTER	smallest chronic toxicity exposure ratio (TER)
SD	standard deviation
se	standard error
SEM	standard error of the mean
SEP	standard evaluation procedure
SF	safety factor
SFC	supercritical fluid chromatography
SFE	supercritical fluid extraction
SIMS	secondary ion mass spectroscopy
S/L	short term to long term ratio
SMEs	small and medium sized enterprises
SOP	standard operating procedures
sp	species (only after a generic name)
SPE	solid phase extraction
SPF	specific pathogen free
spp	subspecies
SSD	sulphur specific detector
SSMS	spark source mass spectrometry
STEL	short term exposure limit
STER	smallest toxicity exposure ratio (TER)

Stand. term / Abbreviation	Explanation
STMR	supervised trials median residue
STP	sewage treatment plant
t	tonne(s) (metric ton)
t _{1/2}	half-life (define method of estimation)
T ₃	tri-iodothyroxine
T ₄	thyroxine
T ₂₅	tumorigenic dose that causes tumours in 25 % of the test animals
TADI	temporary acceptable daily intake
TBC	tightly bound capacity
TCD	thermal conductivity detector
TG	technical guideline, technical group
TGD	Technical guidance document
TID	thermionic detector, alkali flame detector
TDR	time domain reflectrometry
TER	toxicity exposure ratio
TERI	toxicity exposure ratio for initial exposure
TER _{ST}	toxicity exposure ratio following repeated exposure
TER _{LT}	toxicity exposure ratio following chronic exposure
tert	tertiary (in a chemical name)
TEP	typical end-use product
TGGE	temperature gradient gel electrophoresis
TIFF	tag image file format
TLC	thin layer chromatography
Tlm	median tolerance limit
TLV	threshold limit value
TMDI	theoretical maximum daily intake
TMRC	theoretical maximum residue contribution
TMRL	temporary maximum residue limit
TNsG	technical notes for guidance
TOC	total organic carbon
Tremcard	transport emergency card
tRNA	transfer ribonucleic acid

Stand. term / Abbreviation	Explanation
TSH	thyroid stimulating hormone (thyrotropin)
TTC	2,3,5-triphenylterazoliumchloride testing method
TWA	time weighted average
UDS	unscheduled DNA synthesis
UF	uncertainty factor (safety factor)
ULV	ultra low volume
UR	unit risk
UV	ultraviolet
UVC	unknown or variable composition, complex reaction products
UVCB	undefined or variable composition, complex reaction products in biological material
v/v	volume ratio (volume per volume)
vis	visible
WBC	white blood cell
wk	week
wt	weight
w/v	weight per volume
ww	wet weight
w/w	weight per weight
XRFA	X-ray fluorescence analysis
yr	year
<	less than
≤	less than or equal to
>	greater than
≥	greater than or equal to

Abbreviation Explanation ASTM American Society for Testing and Materials BA **Biological Abstracts (Philadelphia)** BART Beneficial Arthropod Registration **Testing Group** BBA German Federal Agency of Agriculture and Forestry CA(S) Chemical Abstracts (System) CAB Centre for Agriculture and **Biosciences** International CAC Codex Alimentarius Commission CAS **Chemical Abstracts Service** CCFAC Codex Committee on Food Additives and Contaminants CCGP Codex Committee on General Principles CCPR Codex Committee on Pesticide Residues CCRVDF Codex Committee on Residues of Veterinary Drugs in Food CE Council of Europe CEC Commission of the European Communities CEFIC European Chemical Industry Council European Committee for CEN Normalisation CEPE European Committee for Paints and Inks CIPAC Collaborative International Pesticides Analytical Council Ltd CMA **Chemicals Manufacturers** Association COREPER Comite des Representants Permanents COST European Co-operation in the field of Scientific and Technical Research DG Directorate General DIN German Institute for Standardisation EC **European Commission**

Explanation
European Chemicals Bureau
European Commission Co- ordination
Environmental Chemicals Data and Information Network of the European Communities
European Environmental Chemicals Data and Information System
Economic Commission for Europe
European Chemical Industry Ecology and Toxicology Centre
European Database on Export and Import of Dangerous Chemicals
European Economic Community
Environmental Health Criteria
European Inventory of Existing Commercial Chemical Substances
European List of New Chemical Substances
Environmental Mutagens Information Centre
Environmental Protection Agency
European Producers of Antimicrobial Substances
European Producers of Formulated Preservatives
European Patent Office
European and Mediterranean Plant Protection Organization
European Standard Characteristics of Beneficials Regulatory Testing
European Union
European Pesticide Hazard Information and Decision Support System
European Predictive Operator Exposure Model
European Wood Preservation Manufacturers
Food and Agriculture Organization of the UN
Forum for the Co-ordination of Pesticide Fate Models and their Use
Fungicide Resistance Action

and Publications

List 2 : Abbreviations of Organisations

Abbreviation	Explanation
GATT	General Agreement on Tariffs and Trade
GAW	Global Atmosphere Watch
GIFAP	Groupement International des Associations Nationales de Fabricants de Produits Agrochimiques (now known as GCPF)
GCOS	Global Climate Observing System
GCPF	Global Crop Protection Federation (formerly known as GIFAP)
GEDD	Global Environmental Data Directory
GEMS	Global Environmental Monitoring System
GRIN	Germplasm Resources Information Network
IARC	International Agency for Research on Cancer
IATS	International Academy of Toxicological Science
ICBP	International Council for Bird Preservation
ICCA	International Council of Chemical Associations
ICES	International Council for the Exploration of the Seas
ILO	International Labour Organization
IMO	International Maritime Organisation
IOBC	International Organization for Biological Control of Noxious Animals and Plants
IPCS	International Programme on Chemical Safety
IRAC	Insecticide Resistance Action Committee
ISCO	International Soil Conservation Organization
ISO	International Organization for Standardisation
IUPAC	International Union of Pure and Applied Chemistry
JECFA FAO/WHO	Joint Expert Committee on Food Additives

Abbreviation	Explanation
JFCMP	Joint FAO/WHO Food and Animal Feed Contamination Monitoring Programme
JMP	Joint Meeting on Pesticides (WHO/FAO)
JMPR	Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues (Joint Meeting on Pesticide Residues)
MITI	Ministry of International Trade and Industry, Japan
NATO	North Atlantic Treaty Organization
NAFTA	North American Free Trade Agreement
NCI	National Cancer Institute (USA)
NCTR	National Center for Toxicological Research (USA)
NGO	non-governmental organisation
NTP	National Toxicology Program (USA)
OECD	Organization for Economic Co- operation and Development
OLIS	On-line Information Service of OECD
OPPTS	Office of Prevention, Pesticides and Toxic Substances (US EPA)
OSPAR	Oslo Paris Convention (Convention for the Protection of the Marine Environment of the North-East Atlantic)
PAN	Pesticide Action Network
RIVM	Netherlands National Institute of Public Health and Environmental Protection
RNN	Re-registration Notification Network
RTECS	Registry of Toxic Effects of Chemical Substances (USA)
SETAC	Society of Environmental Toxicology and Chemistry
SI	Système International d'Unitès
SITC	Standard International Trade Classification
TOXLINE	Toxicology Information On-line

Abbreviation	Explanation
UBA	German Environmental Protection Agency
UN	United Nations
UNEP	United Nations Environment Programme
WFP	World Food Programme
WHO	World Health Organization
WPRS	West Palearctic Regional Section
WTO	World Trade Organization
WWF	World Wildlife Fund